Смекни!
smekni.com

Равноточные и неравноточные измерения оценка точности функций изме (стр. 2 из 4)

в) координаты точек 1: Х1=8 000,00; У1=6 000,00;

г) схема теодолитного хода на рис.

д) горизонтальные углы измерены теодолитом Т30.

Рис. Схема съемочного обоснования

1. Вычисление координат точек теодолитного хода

Запись исходных данных в ведомость ординат

Последовательность вычислений:

Определение угловой невязки и распределение поправок в углы.

Суммируют величины всех измеренных углов полигона и записывают практическую сумму

под общей чертой. Затем вычисляют теоретическую сумму углов полигона по формуле:

, где n – число углов теодолитного хода.

Угловая невязка теодолитного хода:

Вычисленная угловая невязка не должна превышать предельную:

Пред.

Для теодолита Т30 m=0,5. Тогда

.Если полученная невязка окажется меньше предельной, то поправки вводятся на все измеренные углы, учитывая следующие правила:

1. поправки имеют знак, обратный знаку невязки;

2. поправки вводятся поровну во все измеренные углы. Для простоты вычислений допускается введение таких поправок, чтобы исправленные значения углов имели целое число минут;

3. абсолютная сумма поправок должен быть равна невязке.

Сумма исправленных углов должна равняться сумме углов полигона.

Вычисление дирекционных углов теодолитного хода

Дирекционные углы для каждой стороны вычисляют по формуле:

, где
– дирекционный угол предыдущей стороны ход;

– дирекционный угол последующей стороны;

– исправленный угол, лежащий вправо по ходу между стороной с известным дирекционным углом и следующей стороной.

Например, если

– известен, то
будет равен
, где
– угол при второй точке. Дирекционные углы всех последующих сторон вычисляются в том же порядке. Контролем правильности вычисления дирекционных углов является получение исходного дирекционного угла через дирекционный угол последней стороны и первый исправленный угол.

277 46,00+180=457 46-83 08=374 38-360=14 38+180=194 38-128 46=65 52+180=245 52-78 37=167 15+180=347 15-152 29=193 46.

167 15+180=347 15-90 35=256 40+180=436 40-208 31=228 09.

Если дирекционный угол получается больше 360о, как

, то необходимо из него вычесть 360о. Если после прибавки 180о к дирекционному углу исправленный угол не вычитается из него, то необходимо добавить еще 360о, а затем вычитать исправленный угол
. В конце вычислений необходимо получить исходный дирекционный угол.

Вычисление румбов

Вычисленные дирекционные углы переводят в румбы по одной из формул, данных на рисунке, в зависимости от величины дирекционного угла.

Рис. Зависимость между дирекционными углами и румбами.

r2=180-167 15=12 45;

r3 =193 46-180=13 46; r3 =256 40-180=76 40; r3 =228 09-180=48 09;

r4 =360-277 46=82 14.

Вычисление приращений координат, невязок и координат точек.

Приращение координат ∆Х и ∆У есть разности координат двух точек по оси Х и по оси У. Приращения координат по абсолютной величине вычисляют по формулам:

Х=/d*cos

/=/d*cos r/;

У=/d*sin

/=/d*sin r/;

где d – горизонтальное проложение;

– дирекционный угол;

r – румб.

Для нахождения cosr и sinr – значений тригонометрических функций румба линии используют «Пятизначную таблицу тригонометрических функций». Горизонтальное проложение следует умножить на все пятизначное число, выражающее синус или косинус, а результат округлить до сотых долей метра.

∆Х

1. 224,99* cos82 14=224,99*0,1363=30,66,

2. 201,94* cos14 38=201,94*0,9678=195,44,

3. 208,04* cos65 52=208,04*0,4078=84,84,

4. 126,70* cos12 45=126,70*0,9757=123,62,

5. 192,47* cos13 46=192,47*0,9710=186,89,

6. 130,33* cos76 40=130,33*0,2294=29,90,

7. 189,65* cos48 09=189,65*0,6671=126,51.

∆У

1. 224,99* sin82 14=224,99*0,9908=222,92,

2. 201,94* sin14 38=201,94*0,2527=51,03,

3. 208,04* sin65 52=208,04*0,9126=189,86,

4. 126,70* sin12 45=126,70*0,2207=27,96,

5. 192,47* sin13 46=192,47*0,2379=45,79,

6. 130,33* sin76 40=130,33*0,9731=126,82,

7. 189,65* sin48 09=189,65*0,7449=141,27.

Перед значениями ∆Х и ∆У ставят знак плюс (+) или минус (-) согласно названию румба:

Название румбов Знак приращения координат
∆Х ∆У
1 2 3
СВ + +
ЮВ - +
ЮЗ - -
СЗ + -

Затем подсчитывают алгебраические суммы для ∆Х и ∆У. Теоретическая сумма приращений замкнутого хода должна равняться нулю, т.е.

,
. Из-за неизбежности случайных ошибок измерений это условие не выполняется и величины сумм ∆Х и ∆У будут являться невязками по оси Х и по оси У.

Абсолютная невязка теодолитного хода представляет собой гипотенузу прямоугольного треугольника с катетами, равными fxи fy,, т.е. fабс=

. Допустимость этой невязки определяется относительной невязкой, которая не должна превышать 1/1500 при измерении расстояний 20-метровой стальной лентой.

Для определения относительной невязки подсчитывают периметр теодолитного хода с округлением до сотен метров и вычисляют ее по формуле fабс/Р.

После подсчета относительной невязки следует невязки fxи fy распределить в виде поправок соответственно на все ∆Х и ∆У.

Суммы исправленных ∆Х и ∆У должны равняться нулю.

Координаты точек вычисляются по формулам:

Контролем служит получение заданных координат точки №1.

Вычисление координат точек диагонального хода.

Координаты точек диагонального хода вычисляют в той же последовательности, что и для замкнутого теодолитного хода. Некоторые различия в вычислениях заключаются в следующем:

1. Теоретическую сумму углов диагонального ход подсчитывают по формуле:

, где
и
– соответственно начальный и конечный дирекционные углы.

N – число измеренных углов.

2. Теоретическую сумму приращений вычисляют по формулам:

;
, где Хннкк – координаты начальной и конечной точек, т.е. точек 5 и 2.

3. Невязку в приращениях координат вычисляют по формулам:

fx=

fy=
.

=332 34,
332 37.
= - 3.

Доп

=1,5
=+-2,5. Р=319,98.

=- 156,41,
= - 268,09.

= 38,95,
= - 217,75

fx=8186,98-29,90=81157,08-126,51=8030,57-8225,93= - 195,36,

fy=6045,82-126,82=5919-141,27=5777,73-5828,07= - 50,34.