Смекни!
smekni.com

Статистика (стр. 10 из 25)

Тест 11

Виды относительных величин:

а) индивидуальные, суммарные;

б) динамика выполнения плана, планового задания.

Литература

1. Теорія статистики: Навчальний посібник / Вашків П.Г., Пастер П.Ш., Сторожук В.П., Ткач Є.Ш. – К.: Либідь, 2001. - 320 с.

2. Статистика: Підручник / С.С. Герасименко, А.В. Головач та ін. 2-е вид.,перероб. і доп. – К. : КНЕУ, 2000. – 467 с.

3. Захожай В.Б., Попов І.І., Коваленко О.В. Практикум з основ статистики: Навч. посіб. – К.: МАУП, 2001.- 176 с.


Тема 5. Анализ рядов распределения

План лекционных занятий

9.Ряды распределения.

9.1.Виды рядов распределения.

9.2.Основные характеристики и графическое изображение вариационного ряда.

10.Показатели вариации.

10. 1.Понятие вариации и основные показатели.

10.2.Математические особенности дисперсии.

10.3.Виды дисперсий.

Методические указания:

В результате обработки и систематизации первичных статистических материалов получаются ряды цифровых статистических показателей, которые характеризуют отдельные стороны изучаемых явлений. Эти ряды называются статистическими.

Статистические ряды бывают двух видов: ряды распределения и ряды динамики.

Статистические ряды

Ряды распределения Ряды динамики

Атрибутивные Вариационные

Дискретные Непрерывные

(Интервальные)

Ряды распределения – это ряды, которые характеризуют распределение единиц совокупности по какому-либо признаку (например, распределение производственного оборудования по видам и срокам службы). Ряд распределения состоит из двух элементов: вариант – значений группировочного признака

и частот – число повторений отдельных вариантов значений признака. Частоты, представленные в относительном выражении, называют частостями и обозначают
. Например, вместо абсолютного числа рабочих, имеющих определённый разряд, можно установить долю рабочих этого разряда. Частости могут быть выражены в долях единицы или в процентах. Замена частот частостями позволяет сопоставить вариационные ряды с различным числом наблюдений.

По характеру вариации различают дискретные и непрерывные признаки. Дискретные признаки отличаются друг от друга на некоторую конечную величину, то есть даны в виде прерывных чисел. Например, тарифный разряд рабочих, количество детей в семье, число рабочих на предприятии. Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину и в определённых границах принимать любые значения. Например, заработная плата рабочих, стоимость основных фондов предприятия.

Атрибутивный ряд распределения образуется по качественному признаку (распределение рабочих по профессиям, машин – по маркам). Вариационный ряд распределения образуется по количественному признаку. Он состоит из вариант и частот. В дискретном ряде распределения отдельные варианты имеют определённые значения (распределение рабочих по разрядам). В тех случаях, когда число вариантов дискретного признака достаточно велико, а также при анализе вариации непрерывного признака, когда значения этого признака у отдельных единиц могут вообще не повторяться, строятся интервальные ряды распределения. Интервал указывает определённые пределы значений варьирующего признака и обозначается верхней и нижней границей интервала.

Различают ряды распределения с абсолютными, относительными и накопленными частотами. Накопленные частоты называют кумулятивными.

Если приведён вариационный ряд с неравными интервалами, то для правильного представления о характере распределения необходимо рассчитать плотность распределения. Плотность распределения – это количество единиц совокупности, приходящихся на единицу величины интервала группировочного признака. Различают абсолютную (

) и относительную (
) плотность:

,

,

где

- частота;

- удельный вес;

- размер интервала.

По форме ряды распределения бывают одно- двух- и многовершинными. Среди одновершинных распределений есть симметричные и асимметричные (скошенные), остро- и плосковершинные.

Если частоты вариантов равноудалены от центра значений признака, то такой вариационный ряд называется симметричным. Если вершина распределения смещена, то есть частоты по обе стороны от центра изменяются неодинаково, то такой вариационный ряд называется асимметричным, или скошенным.

Вариация – это такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию случайную и систематическую. Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих её факторов. Показатель вариации – это колеблемость отдельных значений признака. Степень близости данных отдельных единиц

к средней измеряется рядом абсолютных, средних и относительных показателей. К абсолютным и средним относятся: вариационный размах, среднее линейное и среднее квадратическое отклонение, дисперсия. К относительным: коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

Вариационный размах – это разница между максимальным и минимальным значениями признака:

. Он характеризует диапазон вариации. Его достоинства: простота вычисления и толкования.

Обобщающую характеристику может дать только средняя величина, в частности, средняя из отклонений вариантов от их средней, которая называется среднее линейное отклонение. Оно учитывает различия всех единиц изучаемой совокупности и определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учёта знака этих отклонений:

,

или для сгруппированных данных:


.

Среднее линейное отклонение показывает, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности.

Дисперсия (

) – средний квадрат отклонений, определяется как средняя из отклонений, возведённых в квадрат
:

или
.

Формулу для расчёта дисперсии можно преобразовать следующим способом:

где

- среднее значение квадратов признака,

- среднее значение признака.

Среднее квадратическое отклонение – это корень квадратный из дисперсии, это мера надёжности средней.


.

Размах вариации, среднее линейное отклонение и среднее квадратическое отклонение являются всегда величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.

Относительные показатели вариации:

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней:

.

2. Относительное линейное отклонение характеризует долю усреднённого значения абсолютных отклонений от средней величины:

.

3. Коэффициент вариации:

.

Можно определить три показателя колеблемости признака в совокупности: общую дисперсию, межгрупповую дисперсию, внутригрупповую и среднюю из внутригрупповых дисперсий.