Смекни!
smekni.com

Статистика (стр. 11 из 25)

1) Общая дисперсия характеризует вариацию признака, которая зависит от всех условий в данной совокупности.

,

где

- общая средняя для всей изучаемой совокупности.

2) Межгрупповая дисперсия отражает вариацию изучаемого признака, возникающую под влиянием признака-фактора, положенного в основу группировки. Она характеризует колеблемость групповых (частных) средних

около общей средней
.

,

где

- средняя по отдельным группам;

- численность отдельных групп.

3) Внутригрупповая дисперсия характеризует вариацию, обусловленную влиянием прочих факторов:

,

где

- номер группы.

4) Средняя внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других, неучитываемых факторов и не зависит от условия (признака-фактора), положенного в основу группировки.


,

где

- групповая дисперсия.

Правило сложения дисперсий: общая дисперсия равна сумме средней внутригрупповых дисперсий и межгрупповой дисперсии.

.

Решение типовых задач

Задача № 1.

Имеются следующие данные о производительности ткачей за час работы.

Таблица 1
№ ткача Изготовление ткани за час работы (х), м
№ ткача Изготовление ткани за час работы (х), м
1 13 -2 4 7 18 -3 9
2 14 -1 1 8 19 -2 4
3 15 0 0 9 22 1 1
4 17 2 4 10 20 -1 1
5 16 1 1 11 24 3 9
6 15 0 0 12 23 2 4
Итого 90 10 126 28

Исчислим:

1) групповые дисперсии;

2) среднюю из групповых дисперсий;

3) межгрупповую дисперсию;

4) общую дисперсию.

Ход решения:

1. Для расчета групповых дисперсий исчислим средние по каждой группе:

Расчет дисперсий по группам представлен в таблице. Подставив полученные значения в формулу, получим:

2. Рассчитаем среднюю из групповых (частных) дисперсий:

.

3. Исчислим межгрупповую дисперсию. Для этого предварительно определим общую среднюю как среднюю взвешенную из групповых средних:

м.

Затем рассчитаем межгрупповую дисперсию:

4. Исчислим общую дисперсию по правилу сложения дисперсий:

.

Проверим полученный результат, исчислив общую дисперсию обычным способом:

Задача №2.

Имеются данные о распределении работающих по тарифным разрядам.

Таблица 1

Тарифный разряд Число рабочих
2 1 2 -2,5 6,25 6,25
3 2 6 -1,5 2,25 4,5
4 6 24 -0,5 0,25 1,5
5 8 40 0,5 0,25 2
6 3 18 1,5 2,25 6,75
Итого 20 90 21,00

Определить дисперсию, среднее квадратическое отклонение, коэффициент вариации.


Ход решения:

1. Определяем среднюю величину по тарифному разряду:

.

2. Определяем дисперсию:

.

3. Среднее квадратическое отклонение:

.

4. Определяем коэффициент вариации:

.

Вывод: Колеблемость среднего квадратического отклонения от средней составляет 23 %.

Задачи для самостоятельного выполнения

Задача №3.

Имеются сведения о дневной выработке работников 4-го и 5-го разрядов.


Определить:

1. Групповые дисперсии.

2. Общую дисперсию.

3. Среднюю из групповых.

4. Межгрупповую дисперсию.

5. Проверить полученные результаты по правилу сложения дисперсий. Сделать статистические выводы.

Таблица 1

Токарь 4-го разряда Токарь 5-го разряда
Количество деталей
, шт
Количество деталей
, шт
1 2 3 4 5 6
1 7 49 1 9 81
2 7 49 2 10 100
3 8 64 3 12 144
4 8 64 4 13 169
5 9 81
6 11 121
Всего 50 428 Всего 494

Задача №4.

С целью установления зависимости между урожайностью и сортом винограда в одном из хозяйств на основе выборки определили урожай на 10 кустах винограда:

Наименование сорта винограда Число проверенных кустов Урожай винограда с каждого куста, кг
Куст №1 Куст №2 Куст №3 Куст №4 Куст №5
1 2 3 4 5 6 7
Сорт «Ф» 3 6 5 7 - -
Сорт «Б» 5 7 6 8 5 9
Сорт «В» 2 9 7 - - -

Исчислить общую, межгрупповую и среднюю из групповых (частных) дисперсий. Определить связь между сортом и его урожайностью.

Задача №5.

Есть две группы людей с разным годовым доходом, тыс. грн.:

Группа А 3 3 3 4

Группа Б 6 6 7

В какую группу нужно отнести человека с годовым доходом 5 тыс. грн.

Тесты для закрепления материала

Тест 1

Различают виды дисперсий для совокупности, разбитой на группы:

а) групповая;

б) средняя из групповых;

в) взвешенная;

д) межгрупповая.

Тест 2

Вариация – это:

а) колеблемость признака;

б) квадрат отклонений признака;

в) модельный интервал.

Тест 3

В статистике

означает:

а) размах вариации;

б) дисперсия;

в) коэффициент вариации.

Тест 4

Вариантами называются:

а) отдельные значения группировочного признака;

б) величины, которые показывают повторяемость признака;

в) величины, которые показывают удельный вес единиц с определённым признаком в их общем количестве.

Тест 5

Построен ряд распределения акционерных банков по количеству выпущенных акций. Вариантой считается:

а) количество банков;

б) количество акций.

Тест 5

Больницы Украины разделены по количеству больничных мест. Частотой считается:

а) количество больничных мест;

б) количество больниц.

Тест 6

Средние значения признака в двух совокупностях одинаковые. Может ли быть вариация признака в этих совокупностях разной:

а) да;

б) нет.

Тест 7

Средние значения признака в двух совокупностях различны. Может ли быть вариация признака в этих совокупностях одинаковой:

а) да;

б) нет.

Тест 8

Дисперсия представляет собой:

а) средний размер отклонений вариант;

б) средний квадрат этих отклонений;

Тест 9

Дисперсия может быть вычислена:

а) только для количественного признака;

б) для количественного и альтернативного признаков.

Литература

1. Мармоза А.Т. Практикум з основ статистики. К.: Ельга, Ніка-Центр, 2003. – 344 с.

2. Сборник задач по общей теории статистики. Учебное пособие. Изд. 2-е. /Под ред. Серга Л.К. – М.: Информационно-издательский дом «Филин», Рилант, 2001. – 360 с.