bx 2 = (c - a) x + FC i = 0,
. (1.2)Из условия (1.2) определяется объем выпуска, при котором пересекаются кривые спроса и удельных издержек. В зависимости от знака правой части равенства возможны три случая.
Случай 1. Для i-й фирмы
< FC i , т. е. кривая удельных издержек лежит выше кривой спроса, не имея точек касания или пересечения. Такая фирма отказывается от участия в конкурсе. Данный случай представлен на рис. 2, а, и мы его исключили из дальнейшего анализа.Случай 2. Для i-й фирмы
= FC i , т. е. кривые спроса и удельных издержек касаются в единственной точке с объемом выпуска . В этом случае единственное значение цены, которое такая фирма может указать в конкурсном предложении, это (Pi)** = AC i ((x i )**) = (a + c)/2. Для такой фирмы подобная комбинация цены и выпуска максимизирует как ожидаемую прибыль, так и вероятность выигрыша. Данный случай представлен на рис. 2, б, и его мы также исключили из дальнейшего анализа.Случай 3. Для i-й фирмы
> FC i , т. е. кривые спроса и удельных издержек пересекаются в двух точках (x i лев и x i прав ), между которыми кривая удельных издержек лежит ниже кривой спроса. Заметим, что при объеме выпуска x i лев фирма получит ту же нулевую ожидаемую прибыль, что и при объеме выпуска x i прав , но при вероятности выигрыша существенно меньшем, чем при объеме выпуска x i прав . Следовательно, из двух точек она предпочтет именно правую –. Минимальная цена в этом случае будет определяться подстановкой в обратную функцию спроса объема выпуска . Данный случай представлен на рис. 2, в.3. Найдем теперь для случая 3 максимальную цену, которую может назначить i-й участник конкурса:
Максимальная цена есть минимум из цены нерегулируемой монополии P d ((x i )*) и цены P 0 , устанавливаемой концедентом. Иными словами, возможна ситуация, когда рациональный участник конкурса будет ориентироваться в качестве максимума цены не на Р 0 , как в случае абсолютно неэластичного спроса, а на некоторую более низкую (!) цену.
Найдем значение выпуска (x i )*, которое выбрала бы нерегулируемая монополия для максимизации своей прибыли. Для этого приравняем предельную выручку предельным издержкам: MR(x) = a — 2bx = c = МС(x). Откуда получаем
. (1.3)Заметим, что в этой точке равенство (1.2) не выполняется (при подстановке (x i )* в (1.2), получим в левой части равенства нуль, а в правой его части величину, по условию больше нуля), следовательно, AC i ((x i )*) < P d ((x i )*). Значит, точка выпуска нерегулируемой монополии лежит внутри отрезка кривой спроса, ограниченного точками выпуска x i лев и x i прав .
Лемма 2. Для всех участников конкурса максимальная цена, которую каждый из них захотел бы установить в ситуации нерегулируемой естественной монополии, будет одинаковой.
Ни одному из участников, какова бы ни была его целевая функция, не выгодно устанавливать цену выше P mon , так как это будет сокращать не только прибыль в случае победы, но и вероятность выигрыша. Однако может оказаться и так, что максимум цены, установленный концедентом, Р 0 будет ниже P mon . В этом случае участники конкурса будут ориентироваться не на P mon , а на Р 0 как на максимально возможную цену.
Таким образом, максимум цены, которую может установить каждый из участ-ников конкурса, определяется как минимум из P mon и Р 0 .
4. Найдем оптимальные значения конкурсных предложений для ситуаций 1 и 2, определенных выше.
То, что ни в одной из этих ситуаций ни одному из участников, какую бы целевую функцию он ни имел, не выгодно устанавливать цену выше P mon , показано выше. Покажем теперь, что ни одному из участников не выгодно устанавливать цену на уровне P mon . Для этого заметим, что пересечение кривых спроса и удельных издержек 3 означает доступность для выбора объемов выпуска на отрезке [(х)*, x i прав ].
Докажем следующее утверждение.
Утверждение 1. Участник конкурса, например, i-й, максимизирующий вероятность своего выигрыша при полном незнании издержек конкурентов (ситуация 2), в конкурсе с единственным критерием минимума цены установит цену на уровне правой точки пересечения кривых спроса и удельных издержек (x i прав ).
Доказательство. Действительно, любое отклонение от в сторону увеличения цены снижает вероятность выигрыша, что противоречит целевой функции участника, а любое отклонение в сторону снижения цены приводит к гарантированным убыткам в случае победы в конкурсе. Q.E.D.
Таким образом, для максимизирующих вероятность выигрыша участников конкурса оптимальная цена будет равна (P i )* = a — b x i прав , а экономическая прибыль (монопольная рента ex ante) — нулю.
Рассмотрим конкурсы с единственным критерием минимума цены и ситуацию, когда все участники конкурса максимизируют ожидаемую прибыль, ничего не зная о функциях издержек друг друга (ситуация 1). Этот случай требует построения математической модели конкурса.
Ключевым моментом такой модели является логика рассуждений участника конкурса. Сделаем рациональное предположение, что каждый участник конкурса (например, i-й) размышляет следующим образом.
2. Установив цену чуть выше AC i (x i прав ) и пожертвовав, таким образом, некоторой вероятностью выигрыша, он сможет получить положительную экономическую прибыль.
3. Вопрос заключается в том, насколько цена P i должна превысить величину AC i (x i прав ), чтобы математическое ожидание величины прибыли, которую i-й участник конкурса ex ante ожидает получить от реализации выставленного на торги концессионного проекта, стало максимальным.
По аналогии с подходом, предложенным в модели Мартусевича (2007) для абсолютно неэластичного спроса, можно предположить, что i-й участник рационально считает, что значения ключевого параметра (цены), содержащиеся в конкурсных предложениях других участников, являются случайными величинами, которые независимы и одинаково равномерно распределены на отрезке 4 ( AC i (x i прав ), min{ P mon , P 0 }].
Далее предполагается, что все участники конкурса определяют оптимальные значения параметров своих конкурсных предложений, следуя представленной выше логике рассуждений. Если предположить наличие у рассматриваемого i-го участника N – 1 конкурентов ( N ≥ 2), модель будет выглядеть следующим образом.
Для любой цены товара (услуги) P i , указанной в конкурсном предложении i-го участника конкурса и превышающей его удельные издержки ( AC i ≤ P i ≤ P 0 ), его ожидаемая прибыль равна
E (Profit i ) = (P i - AC i (x i ) – CF 0 )*Prob i win + 0 · (1 - Prob i win ), (1.4)
где P i — цена единицы товара (услуги), указанная i-м участником в своем конкурсном предложении; x i — объем выпуска (находится из равенства P i = a — bx i ); AC i (x i ) — ожидаемые удельные издержки 5 i-го участника на производство единицы товара (услуги) при реализации концессионного проекта; Pr ob win i — (субъективно оцениваемая) вероятность выиграть данный конкурс и заключить концессионное соглашение; Pr ofit i = P i — AC i — экономическая прибыль, которую получит i-й участник в случае своей победы; E (Pr ofit i ) — математическое ожидание величины экономической прибыли, которую i-й участник конкурса ex ante ожидает получить от реализации выставленного на конкурс концессионного проекта, указав в своем конкурсном предложении цену на уровне P i .
При сделанных предположениях i-я фирма будет субъективно оценивать свою вероятность выиграть конкурс как
. (1.5)5. Докажем следующее утверждение.
Утверждение 2. В ситуации 1 максимизирующий свою ожидаемую прибыль победитель конкурса получит положительную монопольную ренту ex ante, т. е. оптимальная цена, указанная в его конкурсном предложении, будет строго выше цены, определяемой пересечением кривых спроса и удельных издержек при объеме выпуска x win прав.
Доказательство. Без потери общности допустим, что победил i-й участник конкурса. Выпишем функцию ожидаемой прибыли i-го участника конкурса, предполагающего, что значения конкурсных предложений его конкурентов есть независимые случайные величины, равномерно распределенные на отрезке [ AC i (x i прав); min{P 0, P d ((x i )*)}]. Для простоты далее откажемся от использования индекса i.
E(Profit) = [TR(x) – TC(x)]Prob win (P d (x)). (1.6)
Находя условие первого порядка (FOC), продифференцируем это равенство по х — объему выпуска:
. (1.7)Найдем значение этой производной в точке x i прав. При цене P = AC(x i прав) второе слагаемое равно нулю. Что касается первого слагаемого, то заметим:
,