Смекни!
smekni.com

Шпоры по эконометрике (стр. 6 из 9)

№19. СИСТЕМЫ ЭКОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ. ПРОБЛЕМА ИДЕНТИФИКАЦИИ.

Сложные экономические процессы описывают с помощью системы взаимосвязанных уравнений. Различают несколько видов систем уравнений: 1. Система независимых уравнений - когда каждая зависимая переменная у рассматривается как функция одного и того же набора факторов х:

y1=a11*x1+a12*x2+…+a1m*xm+e1 Для решения этой системы и нахождения ее параметров

yn=an1*x1+an2*x2+…+anm*xm+en используется МНК.

2.Система рекурсивных уравнений – когда зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении:

y1=a11*x1+a12*x2+…+a1m*xm+e1

y2=b21*y1+a21*x1+a22*x2+…+a2m*xm+e2

y3=b31*y1+b32*y2+a31*x1+a32*x2+…+a3m*xm+e3

yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en

Для решения этой системы и нахождения ее параметров используется МНК.

3 Система взаимосвязанных уравнений – когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других – в правую.

y1=b12*y2+b13*y3+…+b1n*yn+a11*x1+a12*x2+…+a1m*xm+e1

y2=b21*y1+b23*y3+…+b2n*yn+a21*x1+a22*x2+…+a2m*xm+e2

yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en

Такая система уравнений называется структурной формой модели. Эндогенные переменные – взаимосвязанные переменные, которые определяются внутри модели (системы) у. Экзогенные переменные – независимые переменные, которые определяются вне системы х. Предопределенные переменные – экзогенные и лаговые (за предыдущие моменты времени) эндогенные переменные системы. Коэффициенты a и b при переменных – структурные коэффициенты модели. Система линейных функций эндогенных переменных от всех предопределенных переменных системы - приведенная форма модели.

где
- коэффициенты приведенной формы модели.

Необходимое условие идентификации – выполнение счетного правила:

D+1=H –уравнение идентифицируемо;

D+1<H – уравнение неидентифицируемо;

D+1>H – уравнение сверхидентифицируемо.

Где Н – число эндогенных переменных в уравнении, D – число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе.

Достаточное условие идентификации- определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении на равен нулю и ранг этой матрицы не менее эндогенных переменных без единицы. Для решения идентифицируемого уравнения применяется КМНК, для решения сверхидентифицируемых - двухшаговый МНК.

№20 КМНК. Применяется в случае точно идентифицируемой модели. Процедура применения КМНК предполагает выполнение следующих этапов: 1. Составляют приведенную форму модели и определяют численные значения параметров для каждого ее уравнения обычным МНК. 2. путем алгебраических преобразований переходят от приведенной формы к уравнениям структурной формы модели, получая тем самым численные оценки структурных параметров.

№21 ДВУХШАГОВЫЙ МНК. МНК)

Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифи­цируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной

и на втором шаге применительно к структурному сверхидентифицируемому уравнению при опре­делении структурных коэффициентов модели по данным теоре­тических (расчетных) значений эндогенных переменных.

Сверхидентифицируемая структурная модель может быть двух типов:

• все уравнения системы сверхидентифицируемы;

• система содержит наряду со сверхидентифицируемыми точно
идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения исполь­зуется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

Применим ДМНК к простейшей сверхидентифицируемой

модели:

Данная модель может быть получена из предыдущей иденти­фицируемой модели:

если наложить ограничения на ее параметры, а именно: b12 =a11

В результате первое уравнение стало сверхидентифицируемым: Н=1 (у1),

D=12) и D+1 > Н. Второе уравнение не изме­нилось и является точно идентифицируемым: Н = 2 и D=1

На первом шаге найдем приведенную форму модели, а

именно:

ДМНК является наиболее общим и широко распространен­ным методом решения системы одновременных уравнений.

Несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи, применение традиционного МНК к одному или нескольким уравнениям также широко распространено в эконометрике. В частности, при построении производственных функций анализ спроса можно вести, используя обычный МНК.

№22 ОСНОВНЫЕ ЭЛЕМЕНТЫ ВРЕМЕННОГО РЯДА.

Временной ряд — это совокупность значений какого-либо по­казателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

• факторы, формирующие тенденцию ряда;

• факторы, формирующие циклические колебания ряда;

• случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство времен­ных рядов экономических показателей имеют тенденцию, харак­теризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправ­ленное воздействие на исследуемый показатель. Однако в сово­купности они формируют его возрастающую или убывающую тенденцию. Рис1

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезон­ный характер, поскольку экономическая деятельность ряда от­раслей экономики зависит от времени года рис2 Некоторые временные ряды не содержат тенденции и цикли­ческой компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Рис3

В большинстве случаев фактический уровень временного ря­да можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой вре­менной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в ко­торой временной ряд представлен как произведение перечислен­ных компонент, называется мультипликативной моделью времен­ного ряда. Основная задача эконометрического исследования от дельного временного ряда — выявление и придание количествен­ного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогно­зирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

№23. АВТОКОРРЕЛЯЦИЯ УРОВНЕЙ ВРЕМЕННОГО РЯДА

Корреляционную зависимость между последова­тельными уровнями временного ряда называют автокорреляцией уровней ряда. Количественно ее можно измерить с помощью линейного ко­эффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Коэффициент корреляции имеет вид:

можно определить коэффициенты автокорреля­ции второго и более высоких порядков. Так, коэффициент авто­корреляции второго порядка характеризует тесноту связи между уровнями уt и yt-1 и определяется по формуле: