Смекни!
smekni.com

Экономико-математическое моделирование транспортных процессов (стр. 1 из 5)

Министерство Путей Сообщения Российской Федерации

Московский Государственный Университет Путей Сообщения (МИИТ)

Кафедра экономики и управления на транспорте

КУРСОВАЯ РАБОТА

по дисциплине

«ЭКОНОМИКО-МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРАНСПОРТНЫХ ПРОЦЕССОВ»

Выполнила студентка гр. ЭЭТ-218 Захватова Е.В.

Москва 2000

ВВЕДЕНИЕ.

Курсовая работа по дисциплине “экономико-математическое моделирование” своей задачей определяет практическое освоение и закрепление теоретических знаний по математическому моделированию экономических процессов. В этом проекте также рассматривается умение привлекать новые информационные технологии для решения оптимизационных задач.

Проект состоит из трёх разделов из области принятия решений в бизнесе, которые являются логически связанными между собой объектами принятия решений (фирма и её филиалы). Субъектами принятия решений являются менеджеры фирмы и её филиалов, а также владельцы пунктов реализации продукции.

Раздел 1 – рассматривает линейное программирование как метод моделирования распределения ограниченных ресурсов. Здесь необходимо максимизировать прибыль предприятия, производящего различные виды продукции. Для этого используется математическая модель общей задачи линейного программирования (ОЗЛП) и программный продукт “EXCEL”.

Раздел 2 – продолжает рассмотрение проблемы распределения ограниченных ресурсов с помощью классической транспортной задачи линейного программирования (ТЗЛП). В нём разрабатывается оптимальный план перевозки сырья для всех филиалов предприятий. Для этого составляется математическая модель транспортной задачи линейного программирования и используется программный продукт “EXCEL”.

Раздел 3 – рассматривает правила принятия решений в бизнесе по различным критериям. Здесь рассматриваются различные способы оптимизации портфеля заказов при реализации продукции всех филиалов предприятия через розничную торговую сеть. При этом используются различные теории вероятности и игровые способы принятия решений.

РАЗДЕЛ 1

1.1. Фирма имеет 25 филиалов, каждый из которых производит четыре вида продукции (i=1,2,3,4).

Рассмотрим работу 8-го филиала фирмы.

Максимальный объем выпуска продукции различных видов приведен в тоннах в столбце К. Филиал закупает сырье, из которого производят продукцию, у семи АО. Выход готового продукта из 1 тонны сырья показан в нижней части таблицы (В9:Н12). Остальная доля сырья идет в отход.

При закупке сырья у разных АО филиал получает различную прибыль. Она указана по строке 6 в тысячах рублей на тонну сырья.

А

В

C

D

E

F

G

H

I

J

K

1

Переменные

2

Номер АО (j)

1

2

3

4

5

6

7

3

значение

0

0

6,909

7,636

0

0

0

4

нижняя граница

5

верхняя граница

Ответ

6

коэффициент в ЦФ

45

45

60

70

45

70

45

949,09

мах

7

Ограничения

8

вид продукции (i)

лев. часть

знак

прав. часть

9

1

0,2

0,1

0,15

0,2

0,25

0,1

0,3

2,56

<=

3,40

10

2

0,2

0,2

0,15

0,1

0,1

0,2

0,1

1,80

<=

1,80

11

3

0,1

0,15

0,1

0,25

0,1

0,15

0,1

2,60

<=

2,60

12

4

0,1

0,1

0,1

0,1

0,1

0,1

0,1

1,45

<=

2,10

В разделе 1 проекта требуется:

1. Определить количество закупаемого заданным филиалом фирмы сырья у каждого АО, (xj), максимизируя прибыль филиала. Нужно формулировать экономико-математическую модель общей задачи линейного программирования (ОЗЛП);

2. С помощью полученных в результате реализации модели отчетов сделать рекомендации филиалу фирмы по расширению программы выпуска ассортимента продукции.

Для решения этой задачи введём следующие обозначения:

Xj – выход выпускаемой продукции;

Bi – максимальный объём выпуска;

С – прибыль филиалов фирмы при закупке сырья.

С учётом введённых обозначений составим экономико-математическую модель ОЗЛП:

F=45x1+45x2+60x3+70x4+45x5+70x6+45x7

0,2x1+0,1x2+0,15x3+0,2x4+0,25x5+0,1x6+0,3x7<=3,4

0,2x1+0,2x2+0,15x3+0,1x4+0,1x5+0,2x6+0,1x7<=1,8

0,1x1+0,15x2+0,1x3+0,25x4+0,1x5+0,15x6+0,1x7<=2,6

0,1x1+0,1x2+0,1x3+0,1x4+0,1x5+0,1x6+0,1x7<=2,1

Аналитический метод решения ОЗЛП называется симплекс-методом.

Для работы по этому методу введём величину Yj – искусственная переменная (величина не использованных ресурсов) и перейдём от системы неравенств к системе уравнений:

F= 45x1+45x2+60x3+70x4+45x5+70x6+45x7® max

0,2x1+0,1x2+0,15x3+0,2x4+0,25x5+0,1x6+0,3x7+Y1=3,4

0,2x1+0,2x2+0,15x3+0,1x4+0,1x5+0,2x6+0,1x7+Y2=1,8

0,1x1+0,15x2+0,1x3+0,25x4+0,1x5+0,15x6+0,1x7+Y3=2,6

0,1x1+0,1x2+0,1x3+0,1x4+0,1x5+0,1x6+0,1x7+Y4=2,1

Преобразуем систему уравнений:

F=0-(-45x1-45x2-60x3-70x4-45x5-70x6-45x7) ® max

Y1=3,4-(0,2x1+0,1x2+0,15x3+0,2x4+0,25x5+0,1x6+0,3x7)

Y2=1,8-(0,2x1+0,2x2+0,15x3+0,1x4+0,1x5+0,2x6+0,1x7)

Y3=2,6-(0,1x1+0,15x2+0,1x3+0,25x4+0,1x5+0,15x6+0,1x7)

Y4=2,1-(0,1x1+0,1x2+0,1x3+0,1x4+0,1x5+0,1x6+0,1x7)

xj>=0, Yj=>0, i=1¸7, j=1¸4.

Решив задачу через модуль «Поиск решения» в электронной таблице Excel (см. Таблицу 1), помимо ответа (ячейка I6), мы получаем также следующие отчеты:

Отчёт по результатам

Целевая ячейка (Максимум)

Ячейка

Имя

Исходно

Результат

$I$6 коэффициент в ЦФ

949.09

949.09

Изменяемые ячейки

Ячейка

Имя

Исходно

Результат

$B$3 значение АО1

0

0

$C$3 значение АО2

0

0

$D$3 значение АО3

6.909090909

6.909090909

$E$3 значение АО4

7.636363636

7.636363636

$F$3 значение АО5

0

0

$G$3 значение АО6

0

0

$H$3 значение АО7

0

0

Ограничения

Ячейка

Имя

Значение

формула

Статус

Разница

$I$9 продукция 4

2.56

$I$9<=$K$9 не связан.

0.836363636

$I$10 продукция 1

1.80

$I$10<=$K$10 связанное

0

$I$11 продукция 2

2.60

$I$11<=$K$11 связанное

0

$I$12 продукция 3

1.45

$I$12<=$K$12 не связан

0.645454545

$B$3 значение АО1

0

$B$3>=$B$4 связанное

0

$C$3 значение АО2

0

$C$3>=$C$4 связанное

0

$D$3 значение АО3

6.909090909

$D$3>=$D$4 не связан.

6.909090909

$E$3 значение АО4

7.636363636

$E$3>=$E$4 не связан.

7.636363636

$F$3 значение АО5

0

$F$3>=$F$4 связанное

0

$G$3 значение АО6

0

$G$3>=$G$4 связанное

0

$H$3 значение АО7

0

$H$3>=$H$4 связанное

0

Отчёт по результатам состоит из трёх таблиц: