За даними 25 підприємств за допомогою аналітичного групування з рівновеликими інтервалами (в три групи) прослідкувати залежність між виробництвом продукції та собівартістю зернових.
1. Результати групування оформити в таблиці та детально проаналізувати.
2. Оцінити суттєвість різниці середніх значень собівартості продукції по підприємствах першої та третьої груп за допомогою t-критерія Стьюдента.
Підприємства | Вироблено продукції, тис. шт. | Загальна сума витрат, тис. грн. | Собівартість одиниці продукції, грн. |
1 | 8,5 | 35 | 9,15 |
2 | 2,7 | 29 | 7,01 |
3 | 4,0 | 67 | 8,37 |
4 | 9,8 | 59 | 9,64 |
5 | 2,5 | 31 | 9,11 |
6 | 4,9 | 68 | 9,09 |
7 | 7,1 | 23 | 7,95 |
8 | 11,0 | 91 | 7,61 |
9 | 5,2 | 43 | 8,20 |
10 | 6,9 | 37 | 8,77 |
11 | 10,7 | 53 | 9,00 |
12 | 4,1 | 20 | 9,35 |
13 | 7,3 | 61 | 9,41 |
14 | 9,7 | 46 | 8,79 |
15 | 6,3 | 32 | 8,95 |
16 | 5,2 | 29 | 8,99 |
17 | 9,0 | 37 | 9,95 |
18 | 8,9 | 59 | 8,11 |
19 | 7,1 | 43 | 8,40 |
20 | 6,4 | 27 | 7,50 |
21 | 10,1 | 85 | 8,33 |
22 | 3,9 | 70 | 7,99 |
23 | 4,5 | 31 | 9,13 |
24 | 6,3 | 55 | 8,45 |
25 | 9,7 | 42 | 9,39 |
Рішення:
Проведемо угруповання за кількістю виготовленої продукції.
Для проведення групування визначимо інтервал групування:
,де
, - відповідно найбільше і найменше значення групувальної ознаки; - кількість груп; інтервал.Отже інтервал групування дорівнює:
і = (11 – 2,5)/3 = 2,84
Відобразимо дані групування в таблицю:
№ п/п | Вироблено продукції, тис. шт. | Загальна сума витрат, тис. грн. | Собівартість одиниці продукції, грн. | Кількість підприємств |
1 | 2,5 – 5,34 | 338 | 77,24 | 9 |
2 | 5,34 – 8,18 | 278 | 59,43 | 7 |
3 | 8,18 – 11,02 | 507 | 79,97 | 9 |
Для визначення тісноти зв’язку між кількістю виготовленої продукції і собівартістю продукції розрахуємо коефіцієнт кореляції:
Для розрахунку потрібно визначити середнє квадратичне відхилення обох ознак, використовуючи формулу:
=171/25 = 6,872 = 216,64/25 = 8,67Дані розраховані за допомогою формули середньої звичайної:
Розрахуємо середнє квадратичне відхилення:
= 2,49 = = 0,49 8,3179/30,5 = 0,27як показали розрахунки між кількістю виготовленої продукції і собівартістю одиниці продукції існує тісний зв’язок.
Проведемо оцінку суттєвості різниці середніх значень собівартості продукції по підприємствах першої та третьої груп за допомогою t-критерія Стьюдента. В таблиці наведено дані першої групи:
№ п/п | Вироблено продукції, тис. шт. | Собівартість одиниці продукції, грн. |
1 | 2,5 | 9,11 |
2 | 2,7 | 7,01 |
3 | 3,9 | 7,99 |
4 | 4 | 8,37 |
5 | 4,1 | 9,35 |
6 | 4,5 | 9,13 |
7 | 4,9 | 9,09 |
8 | 5,2 | 8,2 |
9 | 5,2 | 8,99 |
Шляхом розрахунку середньої арифметичної звичайної середнє значення собівартості одиниці продукціїдорівнює 8,58 грн. Дисперсія дорівнює 0,51, середнє квадратичне відхилення 0,72.
Знайдемо коефіцієнт варіації:
U = (0,72/8,58) * 100 = 8,39 %
t-критерій Стьюдента в даному випадку, для ступенів волі f = 9 – 1 = 8, і рівня довірчої імовірності 95 %, дорівнює 2,3060 таким чином довірчий інтервал для середнього значення дорівнює від 8,15 до 9,0.
Третя група має вигляд:
№ п/п | Вироблено продукції, тис. шт. | Собівартість одиниці продукції, грн. |
1 | 8,5 | 9,15 |
2 | 8,9 | 8,11 |
3 | 9 | 9,95 |
4 | 9,7 | 8,79 |
5 | 9,7 | 9,39 |
6 | 9,8 | 9,64 |
7 | 10,1 | 8,33 |
8 | 10,7 | 9 |
9 | 11 | 7,61 |
Аналогічним чином знайдемо:
=79,97/9 = 8,89G2 = 4,5862/9 = 0,51
G = 0,71
U = (0,71/8,89) * 100 = 7,99
t-критерій Стьюдента в даному випадку, для ступенів волі f = 9 – 1 = 8, і рівня довірчої імовірності 95 %, дорівнює 2,36, таким чином довірчий інтервал для середнього значення дорівнює від 8,45 до 9,3.
За даними 25 підприємств побудувати ряд розподілу в 5 інтервалів (n =
) за загальною сумою витрат.За рядом розподілу обчислити:
1. Моду
2. Медіану
3. Зобразити графічно ряди розподілу: побудувати полігон та гістограму розподілу, огіву, кумуляту інтервального ряду розподілу.
Підприємства | Вироблено продукції, тис. шт. | Загальна сума витрат, тис. грн. | Собівартість одиниці продукції, грн. |
1 | 8,5 | 35 | 9,15 |
2 | 2,7 | 29 | 7,01 |
3 | 4,0 | 67 | 8,37 |
4 | 9,8 | 59 | 9,64 |
5 | 2,5 | 31 | 9,11 |
6 | 4,9 | 68 | 9,09 |
7 | 7,1 | 23 | 7,95 |
8 | 11,0 | 91 | 7,61 |
9 | 5,2 | 43 | 8,20 |
10 | 6,9 | 37 | 8,77 |
11 | 10,7 | 53 | 9,00 |
12 | 4,1 | 20 | 9,35 |
13 | 7,3 | 61 | 9,41 |
14 | 9,7 | 46 | 8,79 |
15 | 6,3 | 32 | 8,95 |
16 | 5,2 | 29 | 8,99 |
17 | 9,0 | 37 | 9,95 |
18 | 8,9 | 59 | 8,11 |
19 | 7,1 | 43 | 8,40 |
20 | 6,4 | 27 | 7,50 |
21 | 10,1 | 85 | 8,33 |
22 | 3,9 | 70 | 7,99 |
23 | 4,5 | 31 | 9,13 |
24 | 6,3 | 55 | 8,45 |
25 | 9,7 | 42 | 9,39 |
Рішення:
Для проведення групування визначимо інтервал групування за допомогою наступної формули:
,де
, - відповідно найбільше і найменше значення групувальної ознаки; - кількість груп; інтервал.Отже інтервал групування дорівнює:
і = (91 – 20)/5 = 14,2
№ п/п | Продуктивність праці | Кількість заводів |
1 | 20 – 34,2 | 8 |
2 | 34,2 – 48,4 | 7 |
3 | 48,4 – 62,6 | 5 |
4 | 62,6 – 76,8 | 3 |
5 | 76,8 - 91 | 2 |
Мода – це варіант, що частіше за все зустрічається в статистичному ряді. Мода розраховується за допомогою наступної формули:
Мо = х0 + і (fm – fm-1)/((fm – fm-1)(fm – fm+1))
де х0 – нижня границя модального інтервалу;
і – величина інтервалу;
fm – частота модального інтервалу;
fm-1 – частота інтервалу, що передує модальному інтервалу;
fm+1 – частота наступного інтервалу за модальним інтервалом.
Проведемо відповідні розрахунки:
Мо = 20 + 14,2
=20 + 14,2 * 0,067 = 20,95Медіана розраховується за допомогою формули:
Ме = х0 + і
де (і Σf)/2 – сума всіх частот пополам;
Sm-1 – накопичена частота інтервалу, що передує медіанному;
fm – частота медіанного інтервалу.
Ме = 34,2 + 14,2 * ((12,5-8)/7) = 43,33
Побудуємо за даними групуваннями гістограму:
побудуємо полігон:
побудуємо кумулятивну криву:
побудуємо огіву:
Задача 3
За даними 25 цехів заводів скласти і розв’язати рівняння кореляційної залежності виробництва литва на одного робітника і собівартістю 1 т, обчисливши при цьому ці показники для кожного заводу. Обчислити коефіцієнт кореляції. Побудувати графік кореляційної залежності. Зробити короткі висновки. Обчислення оформити в таблиці.