Смекни!
smekni.com

Статистико экономический анализ эффективности производства молока по совокупности районов Калужской (стр. 4 из 6)

Ряд расположенных в хронологической последовательности статистических показателей динамический ряд. Статистические показатели, характеризующие изучаемое явление называют уровнями ряда. Динамический ряд представляет собой последовательность уровней, сопоставляя которые между собой можно характеристику скорости и интенсивности развития явления. В результате сравнения уровней получается система относительных и абсолютных показателей динамики: абсолютный прирост, коэффициент роста, темп прироста, абсолютное значение одного процента прироста.

Выделяют базисные и цепные показатели динамики.

Показатели динамики с постоянной базой сравнения характеризуют окончательный результат всех изменений в уровнях ряда от периода, к которому относится базисный уровень, до данного (i- го) периода. Показатели динамики с переменной базой сравнения характеризуют интенсивность изменения уровня от периода к периоду в пределах изучаемого явления.

Проанализируем изменения состояния эффективности производства молока в Думиничском районе в динамике за последние 10 лет.

Возьмем показатели валового надоя на 1 корову, ц; количество коров на 1 работника, гол.; окупаемость затрат, руб.

Рассмотрим расчет показателей по ряду динамики валового надоя на 1 корову (табл.3.1)


Таблица 3.1 – Показатели динамики валового надоя на 1 корову, кг.

Годы Значение Абсолютный прирост Темп роста, % Темп прироста, % Абсолютное значение 1% прироста
цепной базисный цепной базисный
цепной базисный
1997 1536 - - - 100 - - -
1998 1488 -48 -48 97 97 -3,12 -3,12 15,38
1999 1651 163 115 111 107 10,95 7,49 14,89
2000 1850 199 314 112 120 12,05 20,44 16,51
2001 2016 166 480 109 131 8,97 31,25 18,51
2002 1758 -258 222 087 114 -12,8 14,45 20,16
2003 1832 74 296 104 119 4,21 19,27 17,58
2004 1786 -46 250 097 116 -2,51 16,28 18,33
2005 1677 -109 141 094 109 -6,1 9,18 17,87
2006 1784 107 248 106 116 6,38 16,15 16,77

Рассчитаем для данного динамического ряда средний уровень за период, который рассчитывается по формуле:

Ỹ=∑уi/n (3.1)

где, Ỹ- средний уровень за период;

∑уi-сумма значений;

n - число лет исследуемых в динамике.

Средний темп роста:

=(Yn/Y0)1/10 (3.2)

где, n - порядковый номер последнего уровня.

0 - первый порядковый номер.

Средний темп прироста:

=
*100- 100% (3.3)

где

- средний темп роста.

Средний темп роста представляет собой средний коэффициент роста, выраженный в процентах.

Подставим необходимые значение в формулы, получаем, что средний уровень за период равен 24,8, средний темп роста – 1,01, средний темп прироста - 1%.Темп прироста показывает, что валовый надой на 1 корову, кг. в среднем по району за 1997-2006 года увеличился в среднем за год на 1 %.

Максимальное значение было достигнуто в 2001 году, и оно составило 2016 кг. Минимальное значение наблюдалось в 1998 году и равнялось 1488 кг.

Теперь рассмотрим расчет показателей по ряду динамики количества коров на 1 работника, гол.(табл. 3.2)

Таблица 3.2 – Показатели динамики количества коров на 1 работника, гол.

Годы Значение Абсолютный прирост Темп роста, % Темп прироста, % Абсолютное значение 1% прироста
цепной базисный цепной базисный
цепной базисный
1997 3 - - - 100 - - -
1998 3 - - 100 100 - - -
1999 3 - - 100 100 - - -
2000 3 - - 100 100 - - -
2001 3 - - 100 100 - - -
2002 4 1 1 133,3 133,3 33,3 33,3 0,03
2003 5 1 2 125,0 33,3 25,0 -66,7 0,04
2004 6 1 3 120,0 200,0 20,0 100,0 0,05
2005 4 -2 1 66,7 133,3 -33,3 33,3 0,06
2006 6 2 3 150,0 200,0 50,0 50,0 0,04

Аналогично рассчитаем средний уровень за период, средний темп роста и средний темп прироста для количества коров на 1 работника, гол.

Подставив необходимые значение в формулы, получаем, что средний уровень за период равен 0,3, средний темп роста – 1,07, средний темп прироста - 7%.Темп прироста показывает, что количество коров на 1 работника, гол. в среднем по району за 1997-2006 года в среднем за год увеличилось на 7 %.

Максимальное значение было достигнуто в 2004 и 2006 годах, и оно составило 6 гол. Минимальное значение наблюдалось с 1997 по 2001 годы и равнялось 3 гол.

Аналогично рассмотрим расчет показателей по ряду динамики окупаемости затрат, руб.(табл. 3.3)

Таблица 3.3 – Показатели динамики окупаемости затрат, руб

Годы Значение Абсолютный прирост Темп роста, % Темп прироста, % Абсолютное значение 1% прироста
цепной базисный цепной базисный
цепной базисный
1997 2,84 - - - 100 - - -
1998 1,52 -1,32 -1,32 53,52 53,52 -46,48 -46,48 0,028
1999 3,34 1,82 0,50 219,74 117,61 119,74 17,61 0,015
2000 2,60 -0,74 -0,24 77,84 91,55 -22,16 -8,45 0,033
2001 4,58 1,98 1,98 176,15 161,27 76,15 61,27 0,026
2002 5,85 1,27 3,01 127,73 205,99 27,73 105,99 0,046
2003 5,59 -0,26 2,75 95,56 196,83 -4,44 96,83 0,059
2004 2,60 -2,99 -0,24 46,51 91,55 -53,49 -8,45 0,056
2005 2,78 0,18 -0,06 106,92 97,89 6,92 -2,11 0,026
2006 1,43 -1,35 -1,41 51,44 50,35 -48,56 -49,65 0,028

Подставив необходимые значение в формулы, получаем, что средний уровень за период равен – 0,14, средний темп роста –0,93 , средний темп прироста - -7%.Темп прироста показывает, что окупаемость затрат, руб. в среднем по району за 1997-2006 года уменьшился в среднем за год на 7 %.

Максимальное значение было достигнуто в 2002 году, и оно составило 5,85 руб. Минимальное значение наблюдалось в 2006 году и равнялось 1,43 руб.

Рассмотрев данные ряды динамики, приходим к выводу о том, что в них уровни ряда претерпевают самые различные изменения, то возрастают, то убывают.

3.2 Выравнивание рядов динамики

Выравнивание ряда динамики способом наименьших квадратов заключается в отыскивание уровней кривой, которая наиболее точно отражала бы основную тенденцию изменения уровней в зависимости от времени. Параметры уравнения находят способом наименьших квадратов.

Уравнения, выражающие уровни динамического ряда в виде некоторой функции времени t называют трендом.

Этот прием выравнивания, как и другие приемы, следует применять в сочетании с методом укрупнения периодов. Если в ряду имеются качественно специфические периоды, то выявление тенденций при помощи метода наименьших квадратов целесообразно в пределе каждого из них.

Проведем выравнивание динамического ряда по способу наименьших квадратов для первого признака – валовый надой на 1 корову, ц. Проведем выбор уравнения, поскольку эффективность выравнивания в значительной мере зависит от правильности выбора уравнения, которое более точно может проявить присущую ряду тенденцию. Для этого проанализируем данные приложения.

По данным таблицы (приложение №4) видно, что, несмотря на колебания валового надоя на 1 корову, ц. прослеживается тенденция их поведения. Поэтому логично предположить, что для проявления тенденции можно использовать уравнение прямой:

yi=a0+ a1*t (3.4)

или уравнение второго порядка

yi=a0+ a1*t+ a2*t2 (3.5)

где, a0, a1,a2-неизвестные параметры уравнения;

t - значение дат (порядковый номер).

Для определения параметров уравнения параболы используют программу на ПК «Динамика». Все рассчитанные данные предложены в приложении № 4.

В нашем случае уравнение прямой будет иметь следующий вид:

y = 17,38 + 0,19t, а уравнение параболы: y = 18,57 + 0,19t - 0,11t^2. Коэффициент

a1=0,19, характеризует среднее увеличение данного признака в год,

a0=17,38 - значение выровненного уравнения признака для центрального года в динамическом ряду принятого за начало отсчета, при t=0. Остаточное среднее квадратического отклонения оценивает степень приближения линейного тренда с фактическим уровнем динамического ряда. Колебание фактического уровня рассматриваемого признака около прямой составляет 1,33 или 7,7% (1,33/17,38*100) по отношению к среднему уровню ряда.