Эффект Гиффина.Гиффин изучал потребление в Ирландии: цены на картофель повысились в результате действия правительства, но закупки картофеля возросли. Парадокс. Разгадка проста: картофель – малоценный продукт, но это основной продукт потребления у низкообеспеченных слоев |
2.1. Объясните, почему кривые безразличия не пересекаются и имеют отрицательный наклон. Могут ли кривые безразличия иметь положительный наклон? Рассмотрите два «блага» – ожидаемый доход от акции и риск, связанный с ожиданием дохода. Объясните ситуацию с помощью графика. Нарисуйте кривые безразличия инвестора для этих двух благ.
2.2. Докажите общее условие равновесия потребителя. С какими особенностями потребительского выбора связано существование углового равновесия?
2.3. Студентка готовится к экзаменам по социологии и экономике. У нее есть время прочесть 40 стр. текста по экономике и 30 стр. текста по социологии. За это же время она могла бы прочесть 30 стр. текста по экономике и 60 стр. текста по социологии. Предполагая, что число страниц в час, которые она может изучить по обоим предметам, не зависит от распределения времени, определите, сколько страниц по экономике она могла бы прочесть, если все время потратит только на экономику? Сколько страниц текста по социологии она могла бы прочесть, если все время она потратит только на социологию?
2.4. Для некоторого потребителя функция полезности U(x1,x2)=x1*x2. Постройте кривую безразличия, проходящую через точку (3,4), и найдите предельную норму замещения в этой точке.
2.5. Потребитель тратит имеющиеся у него деньги на покупку двух товаров – xи y. Функция полезности для него имеет вид:
. Потребитель покупает 15 ед. товара x и 10 ед. товара y. Цена товара xравна 10 дол. Найдите доход потребителя. Каков наклон бюджетного ограничения в точке (15,10)?2.6. Функция полезности некоторого потребителя имеет вид: U(x1,x2)=4Öx1+x2, где x1,x2 – два взаимозаменяемых блага. Обычно потребитель потребляет эти блага в количестве x1=9, x2=10. Найдите предельную норму замещения в этой точке. Допустим, потребление первого блага сократилось до 4 ед. Как должно измениться потребление второго блага, чтобы значение функции полезности не изменилось?
2.7. Потребитель имеет функцию полезности вида: U(X1,X2)=(X1+2)(X2+6). Напишите уравнение касательной, проходящей через набор потребительских благ X1=4, X2=6.
2.8. Функция полезности имеет вид U(x1,x2)=min{x1,3x2}. Цена блага x1 равна 2, цена блага x2 равна 1. Доход потребителя равен 140. Определите координаты точки равновесия потребителя.
2.9. Некто потребляет два блага – яблоки (Ха) и бананы (Хb). Целевая функция равна U(Xa,Xb)=Xa*Xb, Pa=1, Pb=2, доход равен 40. Может ли значение целевой функции быть равно 150? 300? Обоснуйте свой ответ.
2.10. Задана функция полезности некоторого потребителя U(x1,x2)=x12*x22 и цены двух благ – P1, P2. а) Найдите предельную норму замещения этих двух благ в точке (х1, х2).
б) какую долю дохода потребитель расходует на первое благо, если он выбирает наилучшее сочетание товаров? в) Если в общем виде U(x1,x2)=c*x1a*x2b, где c, a, b – положительные числа, то какую долю дохода потребитель тратит на первый товар.
2.11. У Кати есть выбор: съесть шоколадку или получить денежную компенсацию. Катя очень любит шоколад, но после 4–х шоколадок они превращаются для нее в «антиблаго», т.е. она согласна съесть еще одну шоколадку, если ей за это заплатят. Нарисуйте карту кривых безразличия для Кати.
2.12. Предельная полезность масла для потребителя задана уравнением MUм=40–5Qм, предельная полезность хлеба MUх=20–3Qх. Соответственно цена масла Рм=5, цена хлеба Рх=1. Общий доход равен 20. Найдите равновесное количество хлеба и масла для данного потребителя.
2.13. В набор потребителя входят два товара – пиво и бананы, общая полезность которых характеризуется следующими данными:
Количество кружек пива | 1 | 2 | 3 | 4 | 5 | 6 |
Общая полезность | 10 | 18 | 24 | 28 | 31 | 33 |
Количество бананов | 10 | 20 | 30 | 40 | 50 | 60 |
Общая полезность | 7 | 13 | 18 | 22 | 25 | 27 |
Цена кружки пива – 10, цена одного банана – 0,5. Общий доход потребителя, который он тратит на эти два товара, равен 25. Найдите набор товаров в состоянии равновесия потребителя.
2.14. Функция полезности для данного потребителя имеет вид U(x1,x2)=4*x1*x2, а доход, выделенный им для покупки данных товаров, равен 24. В оптимальный набор вошли 2 ед. первого блага и 3 ед. второго блага. При каких ценах на товары потребитель сделал данный выбор?
2.15. На рис. показана одна из кривых безразличия потребителя и его бюджетная линия. Цена товара Y равна 12.
а) Каков доход потребителя?
б) Какова цена товара Х?
в) Как изменится положение бюджетной линии при увеличении цены товара Y до 15? При снижении до 10?
г) Напишите уравнение бюджетной линии для каждого варианта.
2.16. Допустим, потребитель имеет месячный доход М=200. на рис. показаны две бюджетные линии и соответствующие им кривые безразличия.
а) Какова цена товара Y?
б) Определите координаты двух точек линии спроса данного потребителя на товар Х?
в) Зависит ли положение данной линии спроса от цены товара Y, от дохода потребителя?
2.17. Потребитель приобретает товары X и Y. Товар Y продается по цене 2 дол. за единицу. Товар Xпродается по цен 10 дол. за единицу, если объем покупки не превышает 20 единиц, а за каждую следующую (сверх 20) покупатель платит 5 дол. Пусть доход М=300. Покажите графически бюджетное ограничение при этих условиях. Товары X и Y – нормальные. Укажите наиболее предпочтительный набор.
2.18.Предположим, потребитель выбирает между двумя товарами X и Y. При заданных начальных ценах товаров и доходах потребитель, максимизирующий полезность, делает следующий выбор: X=4, Y=5 ед. Допустим, цены товаров и доходов изменились таким образом, что бюджетная линия описывается уравнением: Y=14–0,75Х. Увеличилась ли для потребителя максимально достижимая полезность? Объясните ответ графически.
2.19. Проанализируйте график на рис. и ответьте на вопросы:
а) Если доход потребителя равен 300, какова цена товаров X, Y?
б) Чему равна норма замещения в точке А?
в) Может ли предельная норма замещения в точке В равняться 5?
г) Если доход потребителя не меняется, как бы должны измениться цены товаров X, Y, чтобы точка В стала точкой равновесия потребителя?
2.20.Функция спроса на вино Q=0,02M–2P, где М – доход, Р – цена бутылки вина, Q – количество бутылок вина. Пусть М=7500, Р=30.
а) Если цена вина вырастет до 40, то каким должен стать доход, чтобы спрос на вино оставался прежним? При этом доходе и новой цене сколько бутылок вина будет куплено?
б) Чему равен эффект замещения и эффект дохода при повышении цены на вино до 40?
2.21. Рассмотрите рис. и ответьте на вопросы:
а) Если доход М=300, Рх=4, Ру=10, сколько товара Х потребляется при этих условиях?
б) Если цена товара Х упадет до 2,5 (при прочих неизменных условиях), каков будет спрос на товар Х?
в) Найдите эффект замены и эффект дохода в общем изменении спроса на товар Х.
г) Каким товаром – нормальным или низшим – является благо Х?
д) Нарисуйте на отдельном графике кривую Энгеля и кривую спроса для товара Х.
3. Тема: Теория производства и конкурентной фирмы
Глава 1: Абстрактная теория производства.
Пожалуй, самой простой формой представления производства является модель «чёрного ящика».
F – это земля, капитал, труд, предпринимательская способность. Но иногда удобнее рассматривать только один фактор, т.е. остальные не имеют значения. Функция может быть:
· однофакторная и однопродуктовая;
· однопродуктовая и многофакторная;
· многопродуктовая и многофакторная;
Производственная функция, если задана, описывает некоторую технологию. Если задана технология, значит, есть производственная функция. Если технология задана и если мы знаем затраты F, мы можем легко вычислить выпуск Q.
Конечно, существуют различные технологии, однако далее мы рассматриваем только эффективные технологии. Эффективная технология – наиболее производительная из существующих. Заданный объем выпуска – меньше ресурсов; задан объем ресурсов – больше выпуска.
Из всевозможных производственных функций основное внимание уделяется функциям с неоклассическими свойствами:
1.
;2. Функция должна быть дважды дифференцируема;
3.
– предельный продукт фактора (MPF);