Министерство образования и молодежной политики ЧР
ГОУ «Чувашский республиканский Институт образования»
Параметры в школьном курсе математики. Элективный курс.
Выполнила учитель математики МОУ СОШ № 29 г. Чебоксары Морушкина Вера Васильевна
Чебоксары 2009
Оглавление
Структура курса планирования учебного материала. 4
II. Решение линейных уравнений (и уравнений приводимых к линейным), содержащих параметр. 5
III. Решение линейных неравенств, содержащих параметр. 7
IV. Квадратные уравнения и неравенства, содержащие параметр. 9
V. Свойства квадратичной функции в задачах с параметрами. 9
VI. Тригонометрия и параметр. Иррациональные уравнения. 10
VII. Показательные и логарифмические уравнения, содержащие параметр. Рациональные уравнения. 10
VIII. Производная и ее применение. 10
Х. Текстовые задачи с использованием параметра. 11
Задачи для самостоятельного решения. 13
Цель профильного обучения в старших классах - обеспечение углубленного изучения предмета и подготовка учащихся к продолжению образования.
В заданиях ЕГЭ по математике с развернутым ответом (часть С), а также с кратким ответом (часть В), встречаются задачи с параметрами.
Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры.
Решению задач с параметрами в школьной программе уделяется мало внимания. Большинство учащихся либо вовсе не справляются с такими задачами, либо приводят громоздкие выкладки. Причиной этого является отсутствие системы заданий по данной теме в школьных учебниках. Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга.
В связи с этим возникла необходимость в разработке и проведении элективного курса для старшеклассников по теме: «Решение задач с параметрами».
Многообразие задач с параметрами охватывает весь курс школьной математики. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления.
При проведении занятий на первое место выходят следующие формы организации работы: лекционно-семинарская, групповая и индивидуальная. Рекомендуемые методы работы: исследовательский и частично-поисковый. Задачи с параметрами дают прекрасный материал для настоящей учебно-исследовательской работы.
Задачи курса
1. Сформировать у учащихся устойчивый интерес к предмету;
2. Выявить и развить математические способности;
3. Подготовить к ЕГЭ и к обучению в вузе
1. Формировать у учащихся умения и навыки по решению задач с параметрами, сводящихся к исследованию линейных и квадратных уравнений, неравенств для подготовки к ЕГЭ и к обучению в вузе.
2. Изучение курса предполагает формирование у учащегося интереса к предмету, развитие их математических способностей, подготовку к ЕГЭ, централизованному тестированию и к вступительным экзаменам в вузы
3. Развивать исследовательскую и познавательную деятельность учащегося.
4. Обеспечить условия для самостоятельной творческой работы.
В результате изучения курса учащиеся должны
1. Усвоить основные приемы и методы решения уравнений, неравенств систем уравнений с параметрами.
2. Применять алгоритм решения уравнений, неравенств, содержащих параметр.
3. Проводить полное обоснование при решении задач с параметрами.
4. Овладеть навыками исследовательской деятельности.
I. Первоначальные сведения. 2ч
II. Решения линейных уравнений, содержащих параметры. 2ч
III. Решения линейных неравенств, содержащих параметры. 2ч
IV. Квадратные уравнения и неравенства, содержащие параметры. 7ч
V. Свойства квадратичной функции в задачах с параметрами. 4ч
VI. Тригонометрия и параметры. 2ч
Иррациональные уравнения. 2ч
VII. Показательные и логарифмические уравнения, содержащие параметры.
Рациональные уравнения. 2ч
VIII. Производная и ее применения. 4ч
Графические приемы решения. 2ч
IX. Нестандартные задачи с параметрами. 6ч
- количество решений уравнений;
- уравнения и неравенства с параметрами с некоторыми условиями
X. Текстовые задачи с использованием параметра. 4 ч
Определение параметра. Виды уравнений и неравенств, содержащие параметр.
Основные приемы решения задач с параметрам.
Решение простейших уравнений с параметрами.
Цель: Дать первоначальное представление учащемуся о параметре и помочь привыкнуть к параметру, рассмотреть понятие «параметр», его существенный признак и двойственная природа, особенности записи ответов при решении заданий с параметром.
Примерное содержание.
Решить уравнение с параметром - это значит найти все те и только те значения параметра, при которых задача имеет решения.
Условимся считать, что параметры в уравнениях принимают действительные значения, в задачах с параметрами отыскиваются действительные решения.
Другими примерами равенств с параметрами могут служить общие виды функций, изучаемых в основной школе.
- линейная функция y=kx+b, (k, b - параметры, x, y- переменные);
- квадратичная функция y= ax²+bx+c, где а≠0 (a, b, c-параметры, x, y -переменные).
Задачи с параметрами мы встречаем и в геометрии. Уравнение окружности с центром в начале координат имеет вид
, где x, y- координаты точек - переменные, r- радиус окружности – параметр.Моделируя различного вида задачи, можно получить различного вида уравнения, для которых нужно уметь выбирать ответы.
Общие подходы к решению линейных уравнений. Решение линейных уравнений, содержащих параметр.
Решение уравнений, приводимых к линейным.
Решение линейно-кусочных уравнений.
Применение алгоритма решения линейных уравнений, содержащих параметр.
Геометрическая интерпретация.
Решение системных уравнений.
Цель: Поиск решения линейных уравнений в общем, виде; исследование количества корней в зависимости от значений параметра.
Примерное содержание.
1. Алгоритм решения уравнений вида Ах=В.
Решением является любое действительное число | При А=0 и В=0 |
Нет решений | При А=0, |
Единственное решение | При |
2. Рассмотреть примеры.
ПРИМЕР 1: Решить уравнение:
Решение.
Приведём данное уравнение к виду Ах=В и воспользуемся алгоритмом.
, ,Рассмотрим случаи:
Если
т.е. и , то обе части уравнения разделим на . Получим , сократим дробь и получим единственное решение уравнения: .Если
, то подставив это значение параметра в уравнение, получим или - неверное числовое равенство, следовательно, данное уравнение решений не имеет.Если
, то подставив это значение параметра в уравнение, получим или - верное числовое равенство, следовательно, решением данного уравнения является любое действительное число.