Смекни!
smekni.com

Работа «Оперативка» (стр. 8 из 11)

Сначала давайте рассмотрим наиболее простой процесс 1T/1C, по которому производится львиная доля современной памяти.

Ячейка ферроэлектрической памяти похожа на 1T/1C ячейку DRAM. Единственное отличие заключается в том, что в DRAM одна из обкладок конденсатора заземлена, а в FeRAM она подключена к передающей линии (driveline).


Рис.5.1.1 Ячейки DRAM и FeRAM

Запись в ячейку памяти DRAM происходит следующим образом: на линию данных (bitline) выставляется значение сигнала, который следует записать в конденсатор. Для записи 1 на линию данных подается положительное напряжение питания Vdd. После этого на управляющую линию (wordline) подается сигнал, который открывает полевой транзистор. Конденсатор заряжается, и мы имеем сохраненный бит информации. В ячейке FeRAM запись 1 происходит другим образом. Для этого на передающую линию подается положительное напряжение питания, линия данных заземляется, а полевой транзистор находится в открытом состоянии. Бинарной "1" соответствует точка 1 на графике петли гистерезиса (Рис. 2).

Запись "0" происходит подобным образом. В DRAM линия данных подключается к земле, а транзистор открывается. В этом случае конденсатор полностью разряжается, что и соответствует бинарному "0". В FeRAM запись 0 (положительное значение поляризации материала, точка 3 на графике петли гистерезиса, см. Рис. 2) происходит после подачи положительного напряжения питания на линию данных. В этом случае передающая линия подключается к земле, а транзистор держится в открытом состоянии.

Подводя итог под различиями в работе ячеек DRAM и FeRAM, можно сказать, что иной принцип работы ячейки ферромагнитной памяти является результатом того, что бинарным "1" и "0" соответствуют отрицательное и положительное значения поляризации, а не нулевой и единичный заряд конденсатора, как это происходит в случае с DRAM.

Значение ячейки памяти FeRAM можно определить после подачи положительного напряжения питания Vdd на передающую линию. Если начальная поляризация ферромагнетика негативная (позитивная), то чтение ячейки возвращает маленькое (большое) значения сигнала на линии данных. Одним из негативных свойств ячейки ферромагнитной памяти является то, что, после чтения содержимого, данные в ней перестают сохраняться. То есть, после чтения ячейки, в ней необходимо обновить значение поляризации.

Ячейка ферромагнитной памяти, производимая по схеме 2T/2C, состоит из двух ячеек 1T/1C (Рис. 4). Также как и ячейка 1T/1C, ячейка 2T/2C имеет управляющую линию (WordLine) и передающую линию (PlateLine), но данные с конденсаторов считываются через раздельные линии данных (BitLine и Complement BitLine). За счет этого достигается большая надежность хранения информации. А становится возможным это благодаря тому, что данные, хранящиеся в двух конденсаторах всегда противоположные. При этом напряжение между шиной данных (BitLine) и комплиментарной ей (Complement BitLine) всегда будет либо V0 - V1 , либо V1 - V0, где

- напряжения на линии данных и комплиментарной ей, C0 и C1 - емкости конденсаторов, из которых состоит ячейка, CBitLine - паразитная емкость шины данных, а Vdd - положительное напряжение питания. Значения напряжения между линиями зависит от того, где хранится "1" в C0 или C1. Сигнал с конденсаторов подается на усилитель, после которого считывается значение ячейки 2T/2C. Использование усилителя, а также дополнительной ячейки 1T/1C значительно увеличивает цену такой памяти. Существенное увеличение размеров ячейки 2T/2C также играет немаловажную роль. Это приводит к тому, что в настоящий момент не может быть достигнуто высокой интеграции такой памяти. Наибольшие структуры, произведенные по такой технологии, имеют объем 1 мегабит.

Рис.5.1.2 Схема 2T/2C

С другой стороны, повышенная надежность таких систем позволяет с успехом использовать их в нечеловеческих условиях, в условиях космоса. Даже маленькому ребенку известно, что для того, чтобы система могла работать в космосе, она должна выдерживать изрядные доли радиации. FeRAM прекрасно зарекомендовала себя в таких условиях, что открывает неизведанные горизонты для использования этой технологии. Энергонезависимость, а, следовательно, и малое потребление энергии становятся серьезным козырем FeRAM в борьбе за лидерство на рынке технологий для космоса. Я не оговорился: именно на рынке космических технологий, так как сейчас мы наблюдаем процесс коммерциализации космических исследований, суть которого заключается не только в запуске коммерческих космических аппаратов, но и в участии транснациональных корпораций в национальных космических программах.

Итак, о продуктах, выпущенных на рынок производителями. Toshiba совместно с Infineon Technologies выпустила прототип 8-мегабитной микросхемы памяти FeRAM. 32-мегабитная микросхема ожидается в начале 2002 года. По заявлению Шизуо Савада (Shizuo Sawada), менеджера передовых устройств памяти фирмы Toshiba, массовое производство памяти начнется в 2003 году. В настоящий момент ведутся разработки 64-мегабитных и 128-мегабитных микросхем памяти. 32-мегабитные кристаллы будут производится по 0.25-микронному процессу, с последующим переходом на 0.20-микронный процесс. 8-мегабитные кристаллы имеют площадь 76 квадратных миллиметров и цикл записи информации от 100 до 160 нс.

Фирмы NEC и Fujitsu, занимающиеся разработками встраиваемой FeRAM для процессоров и микроконтроллеров по процессу 2T/2C, достигли не таких значительных успехов на пути увеличения объема памяти, как фирмы Infineon и Toshiba. Это и не странно, поскольку они ставят перед собой немного другие цели. Последние достижения NEC в этой области - это 1-мегабитная структура, которая, как ожидается, будет встраиваться в смарт карты. Структура будет производиться по 0.35-микронному процессу и иметь площадь 18.7 квадратных миллиметра. Это не значит, что NEC существенно отстала в процессе производства от своих конкурентов, просто размеры ячейки 2T/2C, значительно (практически, в 2 раза) превосходят размеры ячейки 1T/1C, на основе которых производят память Toshiba и Infineon Technologies.

Подводя итог всему вышесказанному, можно выделить то, что FeRAM имеет неоспоримые преимущества над существующими технологиями. Более того, как потомок современных технологий памяти, она взяла лучшее от своих предков. С другой стороны, память имеет ряд существенных недостатков. Большинство из них (старение и усталость материала, предпочтение диэлектриком значения сигнала и релаксация) - это результат особых свойств ферромагнитных материалов, и от них в настоящий момент достаточно сложно избавиться.

Увеличившаяся сложность производства ферроэлектрической памяти объясняется, скорее, особенностью хранения информации в FeRAM в отличие от DRAM. Производственный процесс 2T/2C позволяет достичь большей надежности памяти, которая может быть применима в условиях космоса, однако в несколько раз усложняет производство памяти по такому процессу и увеличивает цену FeRAM. Проблемы увеличения плотности массива памяти - это временные проблемы.

5.2 Голографическая память

Широкие перспективы в этом плане открывает технология оптической записи, известная как голография: она позволяет обеспечить очень высокую плотность записи при сохранении максимальной скорости доступа к данным. Это достигается за счет того, что голографический образ (голограмма) кодируется в один большой блок данных, который записывается всего за одно обращение. А когда происходит чтение, этот блок целиком извлекается из памяти. Для чтения или записи блоков голографически хранимых на светочувствительном материале (за основной материал принят ниобат лития, LiNbO3) данных ("страниц") используются лазеры. Теоретически, тысячи таких цифровых страниц, каждая из которых содержит до миллиона бит, можно поместить в устройство размером с кусочек сахара. Причем теоретически ожидается плотность данных в 1TБ на кубический сантиметр (TB/sm3). Практически же исследователи ожидают достижения плотности порядка 10GB/sm3, что тоже весьма впечатляет, если сравнивать с используемым сегодня магнитным способом порядка нескольких MB/sm2, это без учета самого механизма устройства. При такой плотности записи оптический слой, имеющий толщину около 1cm, позволит хранить около 1ТВ данных. А если учесть, что такая запоминающая система не имеет движущихся частей, и доступ к страницам данных осуществляется параллельно, можно ожидать, что устройство будет характеризоваться плотностью в 1GB/sm3 и даже выше.