Смекни!
smekni.com

Избранные главы (стр. 7 из 49)

Однако, несмотря на всю важность и значение игры в процессе внеклассной работы и дополнительного образования по математике, она не самоцель, а средство для развития интереса к математике. Математическая сторона содержания игры всегда должна отчетливо выдвигаться на первый план. Только тогда она будет выполнять свою роль в математическом развитии детей и воспитании их интереса к математике.

Задания

1. Разработайте систему внеклассной работы по математике с учетом возрастных особенностей учащихся: а) 5–6 классов; б) 7–9 классов; в) 10-11 классов.

2. Ознакомьтесь с опытом внеклассной работы одного из организаторов дополнительного математического образования школьников вашего региона (учителя, вузовского преподавателя, работника Центра дополнительного образования и т.п.). Обобщите изученный опыт в форме краткого отчета.

3. Ознакомьтесь с опытом внешкольной работы одного из организаторов дополнительного математического образования школьников вашего региона (учителя, вузовского преподавателя, работника Центра дополнительного образования и т.п.). Обобщите изученный опыт в форме краткого отчета.

4. Пользуясь материалами монографии: Мерлина, Н.И. Дополнительное математическое образование школьников и современная школа (Состояние. Тенденции. Перспективы). – М.: Гелиос АРВ, 2000. – С. 19–42 (см. приложение 3), проанализируйте историю развития дополнительного математического образования школьников в России.

ТЕМА 3. МАТЕМАТИЧЕСКИЙ КРУЖОК (ГРУППА, СТУДИЯ).

Примерное содержание. Роль математического кружка (группы, студии). Цели и задачи кружка (группы, студии). Организацион­ные вопросы частоты и периодичности занятий, формы работы на кружке (в группе, студии); планирование работы кружка (группы, студии), подготовка и проведе­ние занятий, организация выступлений членов кружка (группы, студии); выбор ма­териала, первое и заключительное заседание кружка (группы, студии); накопление материалов занятий кружка и др. Разработка тематики занятий математи­ческого кружка (группы, студии) с учетом возрастных особенно­стей учащихся. Обеспечение преемственности в работе математического кружка (группы, студии). Разновозрастные математические кружки (группы, студии). Изучение регионального опыта.

Теоретические сведения

Деятельность детей в системе дополнительного математического образования протекает в одновозрастных или разновозрастных объединениях по интересам. Занятия могут проводиться по программам одной тематической направленности или комплексным, интегрированным программам. Предусматриваются разные формы проведения занятий: групповые, индивидуальные, со всем составом детского объединения. Для учащихся 10–14 лет наиболее распространенной, традиционной и эффективной формой объединения детей по интересам являются кружок (группа, студия).

Кружок (группа, студия) способствует формированию и развитию интереса учащихся к математике, расширяет и углубляет математические знания, развивает математический кругозор, мышление, способности, исследовательские умения школьников, позволяет в дальнейшем сделать правильный выбор профессии.

Организация работы математического кружка (группы, студии) в школе. Кружки (группы, студии) организуются на добровольных началах для всех желающих школьников. Возможно создание кружков (групп, студий) с уровнями (для более сильных и средних учащихся); с секциями (учебно-исследовательская, оформительская, любителей решения задач); с определенной тематикой (алгебраический, геометрический и т.п.); для подготовки к сдаче ЕГЭ и др.

Кружок (группу, студию) лучше всего организовывать из одновозрастных учащихся, однако возможны и разновозрастные объединения. В состав кружка (группы, студии) входит примерно 10–15 учащихся. На первом занятии следует выбрать старосту, актив и редколлегию кружка (группы, студии). Желательно придумать название, эмблему, девиз.

Занятия кружка (группы, студии) обычно проводятся 2–4 раза в месяц. Продолжительность занятий не должна превышать одного часа. Начинать работу кружка (группы, студии) лучше с начала октября, а завершать в конце апреля. В каникулы предметные кружки (группы, студии) проводить не рекомендуется. Итогом работы кружка (группы, студии) может стать математический вечер.

Планирование работы кружка (группы, студии). План работы кружка (группы, студии) обычно составляется на год. Форма плана может быть любая. При планировании работы кружка (группы, студии) необходимо отразить: номер занятия; дату проведения; содержание занятия; фамилии учащихся, ответственных за подготовку; примечания.

Программа кружка (группы, студии). Содержание занятий. Программа кружковых (групповых, студийных) занятий составляется руководителем кружка (группы, студии) по форме, принятой в данной организации (школе, Центре дополнительного образования и т.д.). Содержание занятий варьируется в зависимости от возраста учащихся, их интересов, основных целей кружка (группы, студии).

Возможные темы кружковых (групповых, студийных) занятий приведены в книге А.В. Фаркова «Внеклассная работа по математике».

– Числа-великаны и числа-малютки (5–6 кл.).

– Запись цифр и чисел у других народов (5–6 кл.).

– Занимательные задачи на проценты(6 кл.).

– Арифметические ребусы (5–7 кл.).

– Геометрические упражнения со спичками (5–6 кл.).

– Задачи на разрезания и перекраивания фигур (5–7 кл.).

– Простейшие графы (6–7 кл.).

– Различные доказательства теоремы Пифагора (8 кл.).

– Математическая индукция (9–10 кл.).

– Принцип Дирихле (6–9 кл.).

– Занимательные комбинаторные задачи (7–9 кл.).

– Комплексные числа (8–10 кл.).

Приведем краткий список литературы, которая может быть использована организатором дополнительного математического образования при подготовке к занятиям.

1. Андреева, А.Н. Саратовские математические олимпиады / А.Н. Андреева, А.И. Барабанов, И.Ф. Чернявский. – Саратов: Изд-во Сарат. ун-та, 1995.

2. Балк, М.Б. Математика после уроков / М.Б. Балк, Г.Д. Балк. – М.: Просвещение, 1971.

3. Виленкин, Н.Я. Популярная комбинаторика / Н.Я. Виленкин. – М.: Наука, 1975.

4. Гарднер, М. Математические чудеса и тайны / М. Гарднер. – М.: Наука, 1982.

5. Гусев, В.А. Внеклассная работа по математике в 6-8 классах / В.А.Гусев, А.И. Орлов, А.Л. Розенталь. – М.: Просвещение, 1977.

6. Доморяд, А.П. Математические игры и развлечения / А.П. Доморяд. – М., 1961.

7. Дышинский, Е.А. Игротека математического кружка / Е.А. Дышинский. –М.: Просвещение, 1972.

8. Зубелевич, Г.И. Занятия математического кружка в 4 классе / Г.И. Зубелевич. – М.: Просвещение, 1980.

9. Игнатьев, Е.И. В царстве смекалки / Е.И. Игнатьев. – М.: Наука, 1981.

10. Коваленко, В.Г. Дидактические игры на уроках математики / В.Г. Коваленко. – М.: Просвещение, 1990.

11. Кордемский, Б.А. Математическая смекалка / Б.А. Кордемский. – М.: Юнисам, МДС, 1994.

12. Линьков, Г.И. Внеклассная работа по математике в средней школе / Г.И. Линьков. – М.: Учпедгиз, 1954.

13. Лоповок, Л.М. Математика на досуге. – М.: Просвещение, 1981.

14. Математический кружок. Вып. 1, 2. – М.: Бюро-Квантум, 1998.

15. Мерлина, Н.И. Дополнительное математическое образование школьников и современная школа. – М.: Гелиос АРВ, 2000.

16. Нагибин, Ф.Ф. Математическая шкатулка / Ф.Ф. Нагибин, Е.С. Канин. – М., Просвещение, 1988.

17. Перельман, Я.И. Живая математика. – Екатеринбург: Тезис, 1994.

18. Петраков, И.С. Математические кружки в 8–10 классах / И.С. Петраков. М.: Просвещение, 1987.

19. Сефибеков, С.Р. Внеклассная работа по математике: Кн. для учителя: Из опыта работы / С.Р. Сефибеков. – М.: Просвещение, 1988.

20. Спивак, А.В. Математический кружок. 6–7 классы. – М.: Посев, 2003.

21. Степанов, В.Д. Активизация внеурочной работы по математике в средней школе: Кн. для учителя: Из опыта работы / В.Д. Степанов. – М.: Просвещение, 1991.

22. Фарков, А.В. Математические кружки в школе. 5–8 классы. – М.: Айрис-пресс, 2005.

23. Шарыгин И.Ф. Уроки дедушки Гаврилы, или развивающие каникулы. – М.: Дрофа, 2003.

24. Шейнина, О.С. Математика. Занятия школьного кружка. 5-6 кл. / О.С. Шейнина, Г.М. Соловьева. – М.: Изд-во НЦ ЭНАС, 2002.

25. Шуба, М.Ю. Занимательные задания в обучении математике. – М.: Просвещение, 1995.

В одних книгах содержится только математический материал (3, 11, 17 и др.), в других ­– теория, задачи и методические рекомендации (5, 15, 22, 25 и др.), в третьих приведены разработки занятий (2, 8, 18, 24).

Универсальной во всех отношениях является книга М.Б. Балка и Г.Д. Балк «Математика после уроков» (2). В ней даны рекомендации по планированию работы кружка и проведению первого занятия; методике подготовки и проведения кружковых занятий, предложена их тематика; описаны различные формы работы кружка.

Математический материал, рассматриваемый в пособиях, можно условно разделить на следующие группы.

Логические задачи: высказывания (5, 11); графы (5, 24); таблицы истинности (11, 24); круги Эйлера (2, 5); принцип Дирихле (5, 24); раскраски (2); магические квадраты (11, 24); задачи на взвешивание (11); задачи на переливание (5); задачи со спичками (2, 11, 24); игры-стратегии (5, 11, 24); индукция (18) и др.

Элементы теории чисел: свойства чисел (11, 24); действия с числами (18); модуль числа (18); теория делимости (5, 11); системы счисления (18); признаки делимости (11, 24); комплексные числа (18); числовые последовательности (18); приемы рационального счета (11, 24) и др.

Алгебра: уравнения с одной переменной (18); уравнения с несколькими переменными (18); неравенства (18); доказательство тождеств (18); системы уравнений и неравенств (18); определители (18); свойства функций (18); текстовые задачи (5, 18) и др.