Смекни!
smekni.com

Содержание (стр. 8 из 17)

Наиболее распространенным прибором для питания испарителя хладагентом для малогo холодильного оборудования является терморе­гулирующий вентиль. Он регулирует подачу хладагента в испаритель в зависимости от пе­регрева пара на выходе из аппарата и давления в нем. Чем больше тепловая нагрузка на испаритель, тем меньше нужна поверхность для получения заданного перегрева пара хлада­гента на выходе из него и тем выше будет производительность испарителя. Применяют терморегулирую­ший вентиль с внутренним уравниванием (рис. 7.3).

Питание испарителя хладагентом

Рис. 7.3

Терморегулируюший вентиль peaгиpyeт на изменение температуры выходящего из испа­рителя пара хладагента с запаздыванием, что объясняется постепенным изменением темпе­ратур сначала всасывающего трубопровода, затем термобаллона и после этого - темпе­ратуры и давления заполнителя термосистемы. При уменьшении тепловой нагрузки на испа­ритель время запаздывания увеличивается. Запаздывание вызывает импульсную работу терморегулирующего вентиля, поэтому в испа­рителе не обеспечиваются стабильные темпе­ратура и давление кипения хладагента. Если произ-водительность терморегулирующего вен­тиля более чем на 30 % превышает тепловую нагрузку на испаритель, давление хладаген­та в испарителе повышается и компрессор работает, потребляя большее количество энер­гии.

В случае стабильной температуры окружающей среды и малоизменяющейся тепло­вой нагрузки на испаритель холодильного оборудования, со встроенным герметичным агрегатом для подачи хладагента можно использовать капиллярную трубку. Так как при авто­матической остановке компрессора давления нагнетания и всасывания почти выравнива­ются, агрегат запускается практически в разгруженном состоянии. Если температура окру­жающей среды существенно повысится, это приведет к повышению давления конденсации, поступлению избыточного количества хладагента в испаритель и попаданию жидкости в компрессор. При значительном понижении температуры окружающей среды заполнение испарителя хладагентом будет недостаточным.

7.4.3. Регулирование давления кипения хладагента [9, с.467]

Простой способ регулирования давления в испарителе с помощью реле низ-кого давле­ния, управляющего работой компрессора, рассмотрен выше (см. рис. 7.2).

7.4.4. Регулирование давления конденсации хладагента [9, с.467]

Схема автоматизации конденсатора воздуш­ного охлаждения холодильного агрегата, расположенного в машинном отделении, где темпе­ратура воздуха нестабильна, показана на рис. 7.4

Схема автоматизации конденсатора воздушного охлаждения

Км – компрессор, Кд – конденсатор, Р – ресивер, Вн – вентилятор, РД - реле давления, Жз – жалюзи, Д – электродвигатель привода жалюзи

Рис. 7.4

Перед конденсатором установлены регулируемые жалюзи Жз с приводом от элект­родвигателя Д. Воздух проходит через жалюзи и просасывается через конденсатор с помощью вентилятора Вн. При повышении температуры воздуха перед жалюзи и давления в конденса­торе контакты репе давления РД замыкаются, включая электродвигатель Д. Жалюзи медлен­но открываются, через конденсатор проходит большое количество воздуха, и он интенсивно охлаждается. Давление конденсации хладагента снижается. При уменьшении давления на величину дифференциала реле давления его контакты размыкаются. Электродвига­тель Д останавливается, фиксируя открытое положение жалюзи. Таким образом поддер­живаются стабильные значения давления кон­денсации.

7.4.5. Регулирование производительности компрессора [9, с.472]

Регулирование производительности комп­рессора необходимо для приведения её в соот­ветствие с тепловой нагрузкой на испарители холодиль-ного оборудования. В малых комп­рессорах применять встроенные устройства для регулирования производительности (например, для отжима всасывающих клапанов) нецелесообразно по конструктивным сообра­жениям (конструкция компрессора услож­няется, его надежность снижается) .

Для регулирования производителъности малых компрессоров используют, как правило, внешние устройства. Наиболее распростра­нено регулирование производителъности комп­рессора способом пуска и остановки с по­мощью реле температуры или реле низкого давления (см. рис. 7.2).

7.5.Приборы и средства автоматического регулирования [9, с.483]

В малом холодильном оборудовании приме­няют приборы и средства автоматического регулирования и защиты. Приборы восприни­мают регулируемые параметры: температуру, разность температур, давление, время и др.

По источнику энергии приборы могут быть прямого и косвенного действия (с использованием внешней энергии), с двухпозиционным или пропорциональным регулированием. Двухпозиционные приборы и средства автоматического регулирования (реле температу­ры, давления, электромаг-нитные вентили и пр.) находятся в одном из двух положений (замкнуто или разомкнуто, открыто или за­крыто, включено или. выключено). Пропор­циональные приборы (термо- и водорегули­рующие вентили) плавно регулируют параметр от минимального до максимального значения, или наоборот.

Приборы автоматического регулирования поддерживают заданное значение регулируемо­го параметра (заполнение испарителя хлад­агентом, регулирование температуры охлаждаемой среды, давления кипения и конденсации хладагента) .

Приборы автоматической защиты предназначены для остановки компрессора при чрез­мерном повышении давления хладагента в линии нагнетания и опасном понижении давления в линии всасывания.

7.5.1. Терморегулирующие вентили [9, с.483]

Терморегулирующие вентили являются регуляторами прямого действия и предназна­чены для автоматической подачи хладагента в испаритель холодильной машины в зави­симости от перегрева выходящих из испари­теля паров и давления в испарителе. В терморегулирующих вентилях хладагент дросселируется с давления конденсации до давления кипения.

Терморегулирующие вентили могут быть с внутренним и внешним уравниванием.

В ТРВ с внутренним уравниванием типа 22ТРВ-В термочувствительная система за­полнена хладагентом R22. Термочувстви­тельная система терморегулирующих вентиля типа 22ТРВ-В (рис. 7.5) состоит из термобаллона, капиллярной трубки и полости над мембраной.

При увеличении темпера­туры перегрева выходящих из испарителя паров хладагента повышается температура термобаллона, прикрепленного к всасываю­щему трубопроводу у испарителя, и давление в термочувствительной системе терморегули­рующего вентиля повышается. Мембрана, прогибаясь вниз, нажимает на толкатели, кото­рые воздействуют на иглодержатель, сжи­мают пружины и опускают иглу. Проходное сечение между иглой и седлом увеличивается. Хладагент поступает в терморегулирующий вентиль через фильтр, размещенный во вход­ном штуцере, дросселируется в клапане, заполняет корпус и пространство под мембра­ной. Через выходной штуцер хладагент попа­дает в испаритель. При открытии клапана игла опускается до тех пор, пока давление хладагента, заполняющего термочувствитель­ную систему и воздействующего на мембрану сверху, не будет равно сумме давлений хладагента в корпусе ТРВ и пружины.

При остановке компрессора движение па­ров хладагента в испарителе прекратится, температура на выходе из испарителя уравня­ется с температурой кипения хладагента, т. е. перегрев исчезнет. Усилием пружины клапан закроется. Прибор настраивают винтом, кото­рый ввернут в ходовую гайку. Винт уплотнен сальником. Колпачковая гайка предохраняет от возможных утечек хладагента через саль­ник и препятствует обмерзанию сальника.

Терморегулирующий вентиль с внутренним уравниванием типа 22ТРВ-В

1 – винт настройки, 2 – втулка – гайка, 3 – пружина, 4 – игла клапана,

5 – иглодержатель, 6 – седло клапана, 7 – корпус, 8 – фильтр, 9 – входной шту-цер, 10 – мембрана, 11 – трубка капиллярная, 12 – головка вентиля, 13 – толкатель, 14 – штуцер выходной, 15 – термобаллон, 16 – сальник винта наст-ройки, 17 - колпачок

Рис. 7.5

7.5.2. Реле температуры [9, с.488]

Реле температуры применяют в малом хо­лодильном оборудовании для регулирования температуры в охлаждаемом объеме посредст­вом включения и выключения исполнитель­ного механизма (например, электромагнит­ного вентиля перед терморегулирующим вентилем) или пуска и остановки компрессора.

Реле температуры типа ТР. Термочувстви­тельная система реле (рис. 7.6) состоит из термобаллона, соединительного капилляра, сильфона и кожуха сильфона.

Реле температуры ТР-1-02Х

а – схема, б – конструкция; 1 – корпус, 2 – винт настройки дифференциа-ла, 3,7 – гайки, 4 – шкала, 5 – пластина стопорная, 6- винт настройки диапазона,

8 – пружина основная, 9,13,17 – рычаги, 10 – пластина контактная, 11,16 – винты юстировочные, 12 – пружина перикидная, 14,15 – контакты, 18 – пружи-на, 19 – сильфон, 20 – шток, 21 – пружина сильфона, 22 – коромысло, 23 – пружина дифференциала, 24 – термобаллон, 25 – трубка капиллярная

Рис. 7.6

В термочувст­вительной системе находится наполнитель. Термобаллон, помещенный в контролируемую среду, воспринимает ее температуру, от кото­рой зависит давление наполнителя. Действую­щая на сильфон сила давления наполнителя уравновешивается силой упругой деформации основной пружины. При повышении температу­ры среды. давление в термочувcтвителъной системе увеличивается, сильфон сжимается, шток перемещается вверх, преодолевает сопро­тивление пружины и поворачивает угловой рычаг 17 по часовой стрелке вокруг оси. Ког­да свободный конец горизонтальной части уг­лового рычага 17 доходит до верхнего упора в окне коромысла, из него начинает воздейст­вовать пружина дифференциала. Если темпе­ратура повышается на величину установлен­ного дифференциала, то рычаг 17, преодолев усилие пружины дифференциала, с помощью рычага 9 и пружины 12 поворачивает переклю­чающий рычаг 13 контактной группы. В мо­мент, когда геометрическая ось пружины пе­ресекает геометрическую ось переключающего рычага, происходит резкий переброс контакт­ной пластины, в результате контакт замы­кается.