Здраво рассудив, что подавляющее большинство сканируемых в домашних условиях прозрачных оригиналов составляют 35-миллиметровые негативы и диапозитивы, производители уменьшили максимальный размер сканируемой в проходящем свете области. Меньшую интенсивность светового потока скомпенсировали увеличенным временем экспозиции, принеся в жертву скорость сканирования.
Сотовая связь
Оказывается, на вопрос, сколько лет телефону, ответить не так-то просто. Судите сами: принцип трансформирования вибрации мембраны от звуковых волн в электрический сигнал, который подлежит в дальнейшем передаче по проводам на расстояние, открыл французский исследователь Шарль Бурсоль в 1854 году. Позже немецкий естествоиспытатель Иоганн Рейс научился передавать по проводам музыкальные звуки. Но передавать речь все не получалось. Наконец, в 1876 году удача улыбнулась американскому изобретателю Александру Беллу, который догадался, что для передачи речи нужен постоянный ток, и разработал примитивный (но работающий) телефонный аппарат.
Выглядел он ужасно: в центре «натюрморта» находился подковообразный магнит с намотанной на него проволокой — никакой эстетики. Оговоримся, что приоритет Белла — это американская версия истории, но некоторые исследователи ее оспаривают, находя в изобретении «русский след». Впрочем, запатентована технология была именно Беллом, да и словом «телефон» мы обязаны ему. С тех пор телефон начал стремительно меняться и внешне и изнутри. В 1920-е годы это был «колокольчик» со съемным громкоговорителем. В 1937 году телефон обзавелся привычной ныне трубкой и вращающимся диском для набора номера. И прожил в таком виде в СССР и в странах Восточной Европы до конца 1980-х. Советская промышленность никогда не выпускала беспроводные телефоны. Мобильность в пределах собственной квартиры решалась установкой длинного, более десяти метров, витого шнура, позволяющего унести телефон в соседнюю комнату.
В начале 1990-х годов появились беспроводные телефоны с кнопочным набором. Постепенно домашние и офисные аппараты, работающие в диапазоне 50 МГц с радиусом действия в несколько десятков метров, были вытеснены 900-мегагерцевыми аппаратами. Последние обеспечивали более высокую помехозащищенность, некоторую защиту от аппаратов-двойников и радиус действия — до нескольких сот метров от базовой станции. Реальный радиус действия сильно зависел от типа помещения, числа бетонных переборок и прочих препятствий. Однако современные 900-мегагерцевые аппараты позволяют комфортно работать в крупном офисе и многоэтажном здании.
По сути, предками сотовой подвижной связи были радиотелефонные удлинители и различные автономные сети радиосвязи. Кстати, широко известная еще в советские времена радиально-зоновая сеть спецсвязи «Алтай», которой пользовалась тогдашняя государственная элита, обеспечивала подвижность в пределах сот внушительного размера. Поскольку абонентов у этой сети было немного, вопрос об экономии радиочастотного ресурса тогда не стоял. Аналогичные системы связи имелись и в других странах, но это была лишь прелюдия к будущей сотовой связи. Внедрение настоящих сотовых сетей началось лишь после того, как была решена проблема экономии спектра радиочастот и найдены способы определения текущего местоположения подвижных абонентов. Это было необходимо для оптимального направления к ним вызовов и обеспечения непрерывности связи при перемещении абонента из одной соты в другую.
Рождение сотовой связи относят к 1971 году. Именно тогда компания «Bell System» представила в Федеральную комиссию США по связи (FCC) описание архитектуры радиотелефонной связи, которая впоследствии и стала называться сотовой. Но путь от идеи до реального проекта занял довольно долгий срок — коммерческие сотовые сети заработали лишь через десять лет.
Разработка в 1970-х годах сотовых систем и их последующее внедрение в 1980-х годах потребовали решения разнообразных и весьма непростых технических проблем. Одной из серьезнейших было создание небольших по размерам и весу переносных абонентских терминалов. На рубеже 1970-х годов даже передовые по техническим решениям автомобильные терминалы весили немногим менее 15 килограммов. И такое же по назначению устройство надо было реализовать в размерах и весе, приемлемых для удержания одной рукой возле уха. Первыми успехами удалось блеснуть специалистам компании «Motorola» (США).
Один из родоначальников новых направлений телекоммуникаций — Мартин Купер, занимавший в начале 1970-х годов пост вице-президента компании «Motorola». Он первым предложил пути кардинального уменьшения размеров радиотелефона. И вот в 1973 году появился первый сравнительно небольшой радиотелефон, который успешно прошел лабораторные испытания. Мартин Купер сделал с него первый звонок коллеге-конкуренту из «Bell Laboratories». Как свидетельствует сам Купер, он произнес следующие слова: «Представь себе, Джоэл, что я звоню тебе с первого в мире сотового телефона. Он у меня в руках, а я иду по нью-йоркской улице».
В середине 1980-х годов имя Мартина Купера было помещено в Зале Славы беспроводной связи.
Первые системы сотовой связи были аналоговыми и обладали одним серьезным недостатком — несовместимостью систем различных производителей. Это существенно ограничивало возможности перемещения абонентов между странами и даже городами, в которых были развернуты разнотипные системы.
Столь привычные современному пользователю аналоговые сотовые сети начали создаваться в начале 1980-х годов во многих странах Европы на базе унифицированного оборудования стандарта MMT-450 и в США — на базе стандарта AMPS. Именно им в ту пору суждено было принять на себя основную часть подвижных абонентов во всем мире.
В результате европейской инициативы в 1982 году возникла группа экспертов подвижной связи GSM (Group Special Mobile) из 17 европейских администраций связи, которая приступила к разработке нового цифрового стандарта сотовой связи. Многолетние усилия GSM увенчались успехом, и сегодня мы имеем еще одну широко распространенную расшифровку аббревиатуры GSM. Global System for Mobile Communications (глобальная система подвижной связи).
Для решения проблем внедрения и эксплуатации нового стандарта в 1987 году была основана европейская рабочая группа MoU — меморандум понимания сущности совместных соглашений по использованию. Это сообщество партнеров насчитывает к настоящему моменту не одну сотню операторов из почти 100 стран мира. Серьезный подход европейцев к созданию нового стандарта привел к успеху — появлению нынешнего лидера европейской сотовой связи — стандарту GSM, работающего в диапазоне 900 МГц.
«В 1988 году были приняты основные документы и началось освоение производства оборудования для сервисных систем этого стандарта, — пишет в журнале «Радио» А. Голышев. — А в 1991 году первые сети GSM уже стали практически эксплуатироваться. До сих пор процесс создания этого стандарта может считаться образцом совместного решения сложных технических и организационных задач большой группой стран. Разработанные в рамках GSM системные и технические решения широко используются в настоящее время при создании перспективных цифровых систем сотовой связи, в том числе и на базе других технологий. В первую очередь, к таким решениям относится построение сетей GSM на принципах интеллектуальных сетей, применение модели открытых систем, внедрение новых эффективных моделей повторного использования частот и т.п.».
В стандарте используется многостанционный доступ с временным разделением каналов (TDMA), функционирующий в диапазоне частот 890…915 МГц (по линии «вверх») и 935…960 МГц (по линии «вниз») с шириной полосы канала 200 кГц. Помимо каналов трафика присутствуют также каналы управления. Таким образом, в одном физическом радиоканале в GSM реализовано восемь логических каналов связи, каждым из которых может пользоваться отдельный абонент.
Одна базовая станция может поддерживать максимально 16–20 радиоканалов. Максимальная скорость передачи данных в системе — 9,6 Кбит в секунду.
В стандарте GSM применяется так называемая спектрально-эффективная гауссовская частотная манипуляция с минимальным частотным сдвигом. Для защиты от ошибок в радиоканалах системы GSM используется сверточное и блочное кодирование с перемежением.
Сверточное кодирование борется с одиночными ошибками, перемежение позволяет преобразовать групповые ошибки в одиночные, а блочное кодирование освобождает от оставшихся нескорректированных ошибок. Повышение эффективности кодирования и перемежения при малой скорости перемещения абонентских терминалов достигается медленным переключением рабочих частот в процессе сеанса связи со скоростью 217 скачков в секунду.
Для высокой степени безопасности передачи сообщений осуществляется их дополнительное шифрование по алгоритму с открытым ключом.
«Функциональный состав системы вполне традиционный, — отмечает А. Голышев, — она состоит из центра коммутации, центра управления и обслуживания, базовых станций и абонентских терминалов.
Центр коммутации обслуживает группу ячеек (сот), в каждой из которых находится базовая станция (отдельные группы базовых станций управляются специализированным контроллером), обеспечивая все виды соединений, в которых нуждается абонентская подвижная станция, а также "эстафетную передачу" при движении абонента (из соты в соту) и переключение радиоканалов при появлении помех или неисправностей. Центр коммутации непрерывно отслеживает местонахождение подвижных станций, сохраняя эту информацию в специальных защищенных базах данных. Это позволяет осуществлять обслуживание (роуминг) пользователей других сетей данного стандарта (принадлежащих другим операторам)…