При использовании материалов АК направление распространения волн задано наперёд направлением скважины. Следовательно, для определения анизотропии невозможно применить данные продольной волны, при распространении которой колебания частиц совпадают с направлением распространения. Как справедливо отмечено в [100], для решения этой задачи по данным Р волны пришлось бы бурить несколько наклонных скважин, секущих исследуемый интервал под разными углами. Регистрация поперечных волн, возбуждаемых двумя ортогонально расположенными излучателями, существенно изменила возможности АК. Появилась возможность изучения вокруг вертикальной скважины азимутальной анизотропии, вызванной присутствием трещин либо напряжённым состоянием пород Методика решения задачи аналогична применяемой и трёхмерной сейсмике и ВСП. Наоборот, в горизонтальных скважинах с равным успехом могут быть изучены анизотропия, обусловленная тонкой горизонтальной слоистостью отложений, и собственным анизотропия глинистых пород.
Стремительное развитие методики оценки трещиноватости и напряжённого состояния пород по материалам дипольных зондов наступило в середине 90-х годов [100, 109, 122, 124 и др.]. Методика основана на обработке матрицы четырёхкомпонентных данных, которые в простейшем случае можно получить с помощью двух ортогонально расположенных излучателей и двух таких же приёмников, расположенных на некотором удалении от излучателей. Если излучатели или приёмники расположены со сдвигом по оси скважинного прибора (для излучателей это наблюдается всегда), при обработке материалов их программно приводят к единой глубине, что существенно упрощается, если расстояния между излучателями и приёмниками выбраны одинаковыми. Обычно на практике применяют более сложные измерительные зонды. Например, прибор DSI содержит 2 разнесённых излучателя и 8 пар ортогональных приёмников, каждые две пары из которых расположены в одной плоскости [139]. Прибор MAC содержит 8 разнесённых дипольных приёмников. Каждые два соседних приёмника представляют собой ортогональную пару, в которой приёмники расположены на расстоянии 0,152 м [81,104].
Сообщается, что анизотропия скоростей поперечной волны, измеренных дипольными зондами АК, выше, чем по данным трёхмерной сейсмики и ВСП, и достигает 10-25% [124]. Во всех случаях результаты определения в открытых скважинах интенсивности трещиноватости и азимута преимущественного направления трещин подтверждены результатами исследований керна [109,124], материалами АК-сканеров и ЭК-сканеров [100,122,124], определениями проницаемости пород по данным волны Стоунли [109]. В обсаженных скважинах из-за невозможности определения положения скважинного прибора относительно сторон света по материалам дипольного зонда выделяют положение интервалов трещиноватости или напряжённого состояния пород без указания направления их распространения [100].
Весьма перспективным считается определение азимута естественной трещиноватости или напряжённого состояния пород с целью прогнозирования направления трещины гидроразрыва и последующего контроля её фактического положения.
3.5. Выделение проницаемых, в том числе трещиноватых, пород по параметрам волны Стоунли
Это одна из наиболее новых задач, решаемых по материалам АК. Значимость её решения трудно переоценить в интервалах залегания тонко чередующихся, полиминеральных, заглинизированных, битуминозных и плотных, но трещиноватых пород, выделение коллекторов в которых связано с почти непреодолимыми трудностями.
Пионерные теоретические работы по применению волны Стоунли для выделения проницаемых пород появились в начале 80-х годов [88, 89, 120]; несколько позже возможность решения этой задачи была подтверждена скважинными исследованиями [2, 57]. В 90-х годах количество работ, посвященных возможностям волны Стоунли, увеличивается почти в геометрической прогрессии.
Как для всех новых задач, работы, посвящённые выделению проницаемых разностей пород по параметрам волны Стоунли, представляются чрезвычайно противоречивыми, если не учитывать время их появления. При этом уже в первых работах [39] правильно сформулирована физика процесса, лежащего в основе решения. На низких частотах упругих колебаний основной вклад в уменьшение фазовой (и групповой!, если рассматривать волну Стоунли как поверхностную, а не нормальную) скорости распространения и эффективного затухания волны вносит гидродинамический механизм. Он связан с фильтрацией жидкости из скважины в пустотное пространство породы (явление так называемого "акустического ветра", что математически описывается генерацией на границе продольных волн второго рода [38]) и с последующей вязкой диссипацией энергии за счёт трения жидкости о стенки поровых каналов. В породах с эластичной глинистой коркой, выполняющей роль мембраны, в движение приводится жидкость, уже находящаяся в поровом пространстве. Эти явления эквивалентны появлению на границе "скважинная жидкость-горная порода" дополнительной присоединённой массы. Их не следует смешивать с уменьшением vst c ростом пористости, что обусловлено уменьшением модуля сдвига породы. Поэтому более поздние работы, посвящённые этой проблеме, рекомендуют использовать для оценки проницаемости разность рассчитанных и измеренных значений vst. С увеличением частоты колебаний затухание волны Стоунли всё в большей степени определяется диссипацией энергии в скважинной жидкости. Для уменьшения влияния скважины (свойств промывочной жидкости и диаметра скважины) измерения выполняют на низких частотах, которые определяются разными авторами в диапазоне менее 1 кГц [39, 89] и, чаще всего, в диапазоне менее 1,5-2,5 кГц [9, 139]
В большинстве работ 80-х годов возможность решения обратной задачи - выделения проницаемых пород - увязывалась с затуханием волны Стоунли [2, 39, 98]. Очевидным объяснением этому служило отсутствие в то время технических и методических (программных) средств измерений скорости распространения волны Стоунли, вступающей в едином волновом пакете на фоне более высокоскоростных продольной и поперечной волн. Но уже в одной из первых цитируемых работ [57] указывается, что уменьшение vst (увеличение Dtst) является более стабильным параметром для решения задачи, чем затухание волны.
В последние годы преобладают работы, отдающие предпочтение vst. В частности, предлагается выполнять оценку проницаемости пород, используя разность рассчитанных и измеренных значений скорости волны (или обратных значений Dtst) с тем, чтобы учесть влияние межзерновой пористости, свойств скважинной жидкости и диаметра скважины [32, 85, 142, 144]. Дискутируется, что таким образом могут быть идентифицированы породы, проницаемость которых обусловлена трещиноватостью [98, 99, 127, 107 и др.]. В других работах отстаивается противоположное мнение, что изменение параметров волны Стоунли определяется только межзерновой пористостью [35, 102], в последних работах поддерживаются оба мнения. Так как разработка методики не завершена, в цитируемых работах значительное внимание уделяется подтверждению результатов выделения проницаемых пород данными исследований керна и испытаний выделенных интервалов [31, 32, 57, 85, 99, 120] либо материалами ядерно-магнитного каротажа, АК с дипольными зондами, акустических и электрических сканеров [99, 107, 122, 142], отражающих в той или иной мере те же геологические величины (пористость, трещиноватость и связанную с ними проницаемость).
До сих пор неясен минимальный предел проницаемости, при превышении которого породы идентифицируются по параметрам волны Стоунли как проницаемые. По результатам теоретических оценок он должен превышать 1 мД [38, 39], 10 мД [89], 100 и более [151]. В работе [2], описывающей результаты скважинных исследований, утверждается, что важен сам факт проницаемости, а не фактические значения проницаемости и пористости. Если исходить из результатов измерения дебитов нефтяных скважин (единицы и первые десятки м3 в сутки) и толщин работающих интервалов, проницаемость выделенных по параметрам волны Стоунли пород находится в пределах от нескольких десятых до десятков мД.
Сведения о влиянии глинистой корки на параметры волны Стоунли также противоречивы. В экспериментальной работе [65], в которой корка имитировалась слоем парафина, утверждается, что эффект влияния корки превышает влияние проницаемости, и в случае толстой корки увеличение затухания вызвано именно её присутствием. В работах, в которых приведены результаты обработки скважинных материалов, влияние корки не обнаружено [2, 149]. Последними отечественными теоретическими и сугубо производственными работами показано, что приращения Dtst против проницаемых пород с межзерновой пористостью достигают 6-8% от их значений против непроницаемых пород [31, 32, 38]. Вполне естественно, что такие породы не могли быть разбурены и исследованы без образования глинистых корок. Затухание волны достигает при этом 3-4 раз, тем не менее вследствие больших погрешностей его измерения этот параметр является менее надёжным для выделения коллекторов.
Несколько отдельно стоят работы, в которых обсуждается возможность выделения трещин большого раскрытия, в том числе трещин гидроразрыва, по отражённым от них волнам Стоунли [71, 107, 144]. Реализация этого предложения может быть достигнута при обработке данных АК с использованием программных средств, применяемых в наземной сейсморазведке [55].
3.6. Оценка характера и коэффициентов насыщенности коллекторов
Технология решения задачи базируется на разности скоростей распространения и затухания продольной и поперечной волн в породах, насыщенных водой, нефтью и газом. Уже в одной из первых работ было показано, что в модели коллектора, сложенного песчаником, коэффициенты поглощения продольной волны изменяются (увеличиваются) при смене воды на нефть и газ в 3-4 раза, а скорость распространения уменьшается на 0-20% [24]. С увеличением сцементированности пород и внешнего давления, что эквивалентно увеличению глубины их залегания, разности скоростей и затухания волны в породах с разной насыщенностью уменьшаются. Например, на глубинах залегания коллекторов 800-900 м (месторождение Забурунье) значения интервального времени Р волны скачкообразно изменяются на водонефтяном и нефтегазовом контактах на 20-80 мкс/м и легко обнаруживаются на кривой Dtp[46]. С увеличением глубины залегания пород абсолютные значения разностей Dtр и ap при смене порового флюида заметно уменьшаются и становятся различными иногда только при углублённой инструментальной обработке. В открытых скважинах их ещё больше нивелирует наличие зоны проникновения, в которой пластовые флюиды оттеснены вглубь проницаемых пород фильтратом промывочной жидкости. Тем не менее, даже в этом случае они остаются значимыми и заметными при измерениях. Поэтому при расчёте пористости по кривой Dtp рекомендуется принимать полученные значения с коэффициентом 0,90-0,95 для нефтенасыщенных коллекторов и 0,80-0,90, если породы насыщены газом [46, 48].