Смекни!
smekni.com

3. геологических задач (стр. 12 из 22)

Относительно поперечной волны общепризнанно, что в сцементированных породах её скорость распространения не зависит от характера насыщенности или незначительно уменьшается при переходе от газонасыщенных пород к нефте- и водонасыщенным. В той же последовательности уменьшается затухание S волны. Отметим, что эта последовательность обратна установленной для Р волны [19, 24].

Методики оценки по материалам АК характера насыщенности коллекторов в обсаженных скважинах многочисленны и отличаются глубиной обработки первичных данных. Как правило, решение задачи в зарубежных и большинстве отечественных работ не продвигается дальше идентификации на момент проведения измерений типа порового флюида, даже если работы опубликованы в последние 1-3 года. Количественные определения текущих коэффициентов нефте- и водонасыщенности рекламируются редко [22].

Наиболее простая методика определения пористости коллекторов и идентификации газо-, нефте- и водонасыщенных интервалов в обсаженных (и открытых) скважинах основана на измерении скоростей продольной, но все же преимущественно поперечной волны и сравнении их (скоростей в разных интервалах) между собой [121]. О таком же решении задачи для коллекторов, залегающих на малых глубинах, упоминалось выше [46]. В большинстве других работ решение этой задачи предлагается выполнять расчётом модулей К объёмного сжатия [138] или объёмного сжатия и сдвига G [133] и оценивать характер насыщенности после учёта влияния пористости и состава минерального скелета породы.

Методика идентификации насыщенности терригенных и карбонатных коллекторов и определения положений межфлюидных контактов с использованием вычисленных по АК значений коэффициентов Пуассона v детально описана в [93]. В песчаниках с высокими фильтрационно-ёмкостными свойствами (Кп=30%, Кпр=1200 мД) значения v составляли 0,10-0,18 в газонасыщенных интервалах, 0,20-0,25 - в нефтенасыщенных и более 0,35 в породах, содержащих свободную или только рыхло связанную и остаточную воду. Примерно такие же значения v зарегистрированы на водонефтяном контакте в карбонатных породах с пористостью 16 %. Успешное решение задачи было достигнуто и при очень низких значениях фильтрационно-ёмкостных свойств в полевошпатовых песчаниках (Кп=20%, Кпр=2-4 мД, содержание шпатов - до 30%). В глинистых песчаниках (Кгл=20%) успешно определено положение нефтегазового контакта при высокой водонасыщенности пород пресными водами (Кв=45-65%). Объёмное содержание газа местами уменьшалось до 20%, что подтверждено испытаниями. Фильтрационно-ёмкостные свойства этих пород были высокими (Кп=18-23%, Кпр - до 2000 мД). Там же упоминается, что ещё более низкие коэффициенты газонасыщенности, равные 10-15%, обнаружены с использованием значения v другим автором [148]. Эффект уменьшения v при столь низкой газонасыщенности равен таковому в породах, в которых коэффициент Кг газонасыщенности был равен 90%. Очень близка к вышеописанной методика выделения газонасыщенных интервалов с низкими значениями Кг (в диапазоне 5-50%) в рыхлых несцементированных осадках (песчаниках) с использованием отношения vp/vs [108]. Пористость песчаников составляла 30-35%.

Идентификация интервалов коллекторов с различной насыщенностью по динамическим параметрам полного волнового пакета предложена в [7, 19, 27]. Для этой цели используются преимущественно энергетические характеристики волн, в меньшей степени - частотные и фазовые характеристики. Реально это достигается построением полей мгновенных амплитуд, частот и фаз после преобразований волновых пакетов, направленных на повышение отношения амплитуд регистрируемых сигналов к помехам. Авторы подчёркивают, что их подход не имеет общего теоретического обоснования и не всегда подтверждается физическим моделированием и лабораторными исследованиями керна. Тем не менее, при наличии некоторой априорной информации, например, сведений об опорных пластах с известной насыщенностью, методика позволяет получить приемлемые результаты в открытых и обсаженных скважинах.

Специалисты РГУ НГ им. И.М. Губкина [22] предлагают выполнять количественные определения коэффициентов текущей нефтенасыщенности пород в длительно эксплуатирующихся скважинах расчётом по АК коэффициентов сжимаемости пород и их минерального скелета, используя в качестве априорных сведений сжимаемость пластовых вод, нефти и газа. Детали методики расчётов не раскрываются. Тот же подход при дополнительном учёте затухания упругих волн использован другим авторским коллективом [54, 67]. Методика оценки нефтегазонасыщенности терригенных коллекторов в обсаженных скважинах базируется на двух составляющих: увеличении затухания Р и St волн и расчете эффективной сжимаемости пород. Сжимаемости нефти и воды, которые отличаются вдвое, находят по скоростям распространения Р и S волн. Отправной точкой служит модель терригенной породы, состоящей из минерального скелета, рассеянной (дисперсной), структурной и слоистой глинистости. Применение методики связано с известными трудностями, если учесть сложность определения типов и объемов глинистости по материалам ГИС. Наверное, по этой причине рекомендуется выявлять информационные составляющие волновых пакетов сопоставлением фоновых и последующих многократных контрольных измерений. Авторы утверждают, что для продуктивных отложений Западной Сибири, содержащих пресные пластовые воды, для нефтяных залежей иерархия успешного определения характера текущей насыщенности коллекторов определяется рядом АК-ИННК. Для газовых залежей эффективность решения задачи методами стационарного НК, ИННК и АК примерно одинакова.

4. РЕШЕНИЕ ИНЖЕНЕРНЫХ ЗАДАЧ В ОБСАЖЕННЫХ СКВАЖИНАХ

Возросшее в последние годы внимание к продлению сроков активной жизни скважин старого фонда стимулировало решение с помощью материалов АК двух инженерных задач - определения за обсадной колонной упругих свойств пород для последующего расчета параметров гидроразрывов пластов и выделения интервалов напряженного состояния пород, потенциально опасных для сохранения целостности колонн. По способу решения к ним примыкает традиционная задача выделения в бурящихся скважинах интервалов пород с аномально высокими или аномально низкими пластовыми (АВПД, АНПД) либо перовыми (АВПоД, АНПоД) давлениями. Способы решения этих задач практически одинаковы, хотя каждая из них обладает своими тонкостями, обусловленными геолого-техническими условиями в скважинах. Основу решений составляет вычисление по материалам АК динамических модулей (коэффициентов) упругости горных пород: модулей продольной упругости (Юнга) Е, сдвига G и объемного сжатия К, а также коэффициентов Пуассона v и бокового распора Kv ( табл. 10 ). Последний характеризует боковую составляющую геостатической нагрузки.

4.1. Определение характеристик пород для расчета параметров гидроразрывов пластов

Расчетные параметры гидроразрыва пласта (ГРП) включают минимальное и максимальное давления разрыва и скорость его набора, длину и раскрытость трещины разрыва, необходимые количества рабочей смеси и пропанта, закрепляющего трещину. Для расчета этих параметров, например, согласно пакету программ MFRAC-П фирмы Меуег and Assotiates, Inc., необходимо знание следующих характеристик горных пород: глубин залегания и толщин пластов и прослоев в интервале перфорации и на 10-15 м выше и ниже его; литологических характеристик выделенных пластов и прослоев; значений коэффициентов общей плотности, пористости, проницаемости, коэффициента Пуассона и модуля Юнга для каждого выделенного пласта и прослоя.

Определение перечисленных характеристик не представляет трудностей, если в скважине выполнен комплекс ГИС, предназначенный для оценки минерального состава и фильтрационно-емкостных свойств пород: АК, ГГКП, НК, ГК, ПС. Материалы комплекса обеспечивают идентификацию типов пород, определение толщин пластов и прослоев, Dtp, Dts, s, Кп, Кгл, Кпр. Последнюю характеристику находят хотя бы с использованием корреляционных связей между Кп, Кгл и Кпр.

Ситуация существенно усложняется в скважинах старого фонда, пробуренных в 70-80-е годы и исследованных ограниченным комплексом ГИС, в котором отсутствовали методы АК, ГГКП, а в терригенных разрезах и НК. Материалы применявшегося в то время однозондового метода НГК, обеспеченного скважинными приборами ДРСТ-1;2;3 и СП-62, не позволяют определять в терригенном разрезе минералогический состав пород и их пористость с учетом изменяющейся литологии. Хотя это далеко не лучший выход из создавшегося положения, в работах [7, 64] предлагается находить необходимые характеристики пород по материалам АК, полученным непосредственно перед проведением ГРП. Если считать, что данные АК, полученные через обсадную колонну, полностью соответствуют данным открытого ствола, с чем сегодня согласны все отечественные и зарубежные исследователи [7, 25, 90, 139], то алгоритм расчетов характеристик пород весьма прост. Он содержит [64]: идентификацию литологической принадлежности пород с использованием вновь полученных данных АК и уже имеющихся материалов минимального комплекса ГИС - ПС, КС, ГК, НГК, БК; определение пористости чистых и глинистых песчаников согласно выражениям (2-6) и вмещающих аргиллитов на основе графиков уплотнения глин с глубиной [64]; определение проницаемости коллекторов на основе статистической связи между Кп и Кпр; определение общей плотности пород с учетом вычисленных значений общей пористости коллекторов и аргиллитов; расчет значений упругих модулей (коэффициентов) пород с использованием аналитических выражений из табл. 10 .