Авторы разработок и независимые источники [17] подтверждают высокую эффективность акустического воздействия, успешность которого изменяется от 50 до 94% в скважинах с различными дебитами. Наиболее высокие показатели приростов характерны для пластов небольшой (6-8 м) толщины, неоднородных по коллекторским свойствам, средняя проницаемость которых находится в пределах (200-1300) мД, а воздействие выполняется одновременно с кислотной обработкой пород [17, 18]. Эффективность воздействия сохраняется в течение 4-5 мес и даже более года [28]. В работе [17] отмечено, что в высокопроницаемых коллекторах с большими эффективными толщинами из всех видов интенсификации только акустическое воздействие давало положительный эффект.
6.3. Локация подземных выработок и кавернометрия
Последние 20 лет акустической локацией крупных подземных пустот занимаются специалисты ВНИИгеосистем (ранее ВНИИЯГГ). Сообщается [72], что с помощью гидроакустического локатора ГАЛС осуществляется сканирование (в каждом сечении 32 точки) полостей радиусом до 100 м и объёмом до 100 тыс м3. Погрешность измерения расстояния до стенок полости составляет ±2,5%, погрешность определения объёма - ±5%. Аппаратура применялась для измерения поперечных размеров, конфигурации и объёмов полостей в солях, предназначенных для добычи полезных минералов или для хранения нефтепродуктов, выработок твёрдых полезных ископаемых (фосфоритов, кимберлитов, железных руд), образуемых в процессе гидродобычи, для контроля проходки шахтных стволов диаметром до 6 м и глубиной до 1500 м. Там же сообщается о разработке низкочастотной акустической системы с низким уровнем боковых излучений для изучения шахтных стволов, бурящихся на тяжёлых глинистых растворах.
Второе направление связано с разработкой акустических каверномеров. Фирма Sperry-Sun Drilling Services разработала акустический каверномер для исследований сечения ствола скважины в процессе бурения [78]. Полный волновой сигнал оцифровывается и хранится в твёрдотельной памяти. Одновременно регистрируются показания магнитометра и акселерометра. Показаны примеры вычисления по первичным данным профиля ствола скважины, определения объёма цементного раствора для крепления обсадной колонны.
Задачи акустической кавернометрии перечислены в [132]. Наиболее интересной представляется определение эллипсности открытого ствола и обсадной колонны, определение на этой основе интервалов напряженного состояния пород и преимущественного направления его развития.
6.4. Межскважинное прозвучивание
Осуществляется на частотах 100-3000 Гц, которые намного ниже частот АК. В качестве скважинного источника используется электрогидравлический излучатель, приёмные антенны содержат несколько десятков датчиков давления [16]. Системы измерений выбираются такими, чтобы в исследуемых пластах минимальной толщины находилось не менее одной точки приёма и возбуждения. Расстояния между скважинами может достигать 250-600 м. По результатам исследований строятся сейсмотомограммы полей скоростей и затухания, на которых выделяют границы продуктивных пластов и границы разного флюидонасыщения внутри пласта. Материалы АК используются на первом этапе исследований для выделения в разрезе скважин интересующих пластов, а иногда и для контроля полученных результатов.
Сообщается об успешном применении методики при изучении выработанных нефтяных пластов [16], обнаружении полостей выщелачивания твёрдых полезных ископаемых на участках гидродобычи [41], выделении в нефтяных залежах участков с пониженными скоростями упругих волн, образовавшихся в результате закачки в пласты углекислого газа [110].
Возможности акустического каротажа для решения в нефтегазовых скважинах геолого-технических задач многократно расширились после перехода на цифровую регистрацию первичных данных и применения электроакустических преобразователей с улучшенными частотно-энергетическими характеристиками. Для самого метода измерений это расширение заключается в регистрации характеристик других, помимо продольной, упругих волн - поперечной, Стоунли, Лэмба, отраженных - и в расширении диапазонов измерения их значений. Для ГИС в целом возросшие возможности АК отразились на решении новых задач. В первую очередь к ним относятся: исследования геологических разрезов через обсадную колонну; определение анизотропии пород, обусловленной их трещиноватостью, и оценка направлений разрыва трещин гидроразрыва; определение упругих (прочностных) свойств пород и выделение интервалов их напряженного состояния; оценка характера насыщенности плохо сцементированных, глинистых коллекторов и коллекторов с пресными пластовыми водами; оценка технического состояния обсадных колонн и цементного камня в затрубном пространстве, в том числе выделение в камне тонких вертикальных каналов и интервалов газонасыщенного цемента.
Ведущие зарубежные фирмы (Schlumberger, Halliburton, Western Atlas International, CGG) обладают полным набором цифровых скважинных приборов и программных средств для решения всех перечисленных задач. Современный ряд приборов включает приборы, оснащенные компенсированными измерительными зондами и предназначенные для массовых исследований открытых и обсаженных (цементомеры АК) скважин в составе сборок приборов других видов ГИС, приборы с антеннами монопольных и дипольных приемников для регистрации характеристик Р, S, St волн и решения наиболее сложных геологических задач, АК-сканеры для открытых и обсаженных скважин. Независимо от сложности, эти приборы могут работать в составе комбинированных сборок. Программное обеспечение обработки первичных данных реализует все основные функции, обеспечивающие устойчивую регистрацию Р, S, St волн: частичную фильтрацию данных, суммирование информативных сигналов, определение скоростей (интервальных времен) прослеживанием выбранной фазы колебаний и по методике корреляции во временном пространстве "время - интервальное время".
Разработка отечественных технических и программных средств АК для решения новых задач существенно запаздывает, хотя в свое время именно работами отечественных авторов теоретически и экспериментально была доказана целесообразность решения большинства этих задач. Производство оснащено преимущественно аналоговыми приборами предыдущего поколения, оснащенными короткими трехэлементными (АКВ-1, АКШ, АК-4) либо компенсированными измерительными зондами (АК-П, МАК-5, АК-5) и первоначально предназначенными для регистрации характеристик продольной волны. Оцифровка первичных данных выполняется в каротажной лаборатории на дневной поверхности. Многоэлементные приборы АК оснащены антеннами монопольных преобразователей. За исключением прибора АКД-8 передача информации на поверхность реализуется в аналоговом виде. Появление более совершенного прибора АВАК-7, предназначенного для регистрации параметров продольной, поперечной и Стоунли волн и оснащенного трехэлементными измерительными зондами с монопольными и дипольными преобразователями, не решает всех поставленных задач. Этот прибор может служить лишь промежуточным макетом для новых скважинных приборов АК. Программное обеспечение обработки первичных данных и их геологической интерпретации базируется на приемах и решениях, заимствованных из эпохи ручной интерпретации.
Исходя из современного состояния технических и программных средств АК, первоочередными представляются следующие разработки [8]:
1. Цифровой модуль АК для массовых измерений в составе сборок и приборов других видов ГИС. Его основные параметры: компенсированный зонд с двумя монопольными излучателями и двумя приемниками; частоты излучения - 20 (или 12) и 8 кГц; короткие (1,0-1,5 м) зонды и база (0,4-0,5 м) измерения; оцифровка сигналов в приборе с дискретностью по времени 2-8 мкс и по глубине - 0,05-0,2 м; трассировка через прибор линий связи (проходной модуль); длина модуля - 5-6 м, диаметр - 90 и 73 мм. Модуль предназначен для измерения параметров продольной волны, а при благоприятных условиях - и поперечной волны (vs>vЖ). Решаемые задачи: корреляция разрезов, выделение и оценка гранулярных коллекторов, расчет упругих свойств пород.
Возможен вариант непроходного модуля, который должен содержать дополнительно низкочастотный излучатель для регистрации волны Стоунли и зонд с дипольными преобразователями для обеспечения измерений поперечной волны в разрезах со значениями vs<vЖ . Круг решаемых задач расширится за счет оценки трещинно-каверновых коллекторов, выделения проницаемых разностей в сложно построенных породах.
Необходим вариант прибора малого диаметра (48-60 мм) для исследований скважин диаметром менее 120 мм, бурящихся из старых стволов, и для спуска через НКТ в действующих нефтяных и газовых скважинах. Прибор должен иметь, по крайней мере, это очень желательно, компенсированный измерительный зонд с монопольными преобразователями; собственная частота колебаний излучателей - 20-40 кГц. Расстояние от излучателя до ближайшего приемника максимально сокращено (0,6-0,7 м), измерительная база - 0,2-0,4 м. Количество решаемых геологических задач минимальное - расчленение разрезов, выделение гранулярных коллекторов и определение коэффициентов их пористости, в газовых скважинах - определение положений текущего газожидкостного контакта. Прибор может применяться для оценки качества цементирования обсадных колонн диаметром 89-127 мм.
2. Цифровой проходной модуль АК-цементометрии для исследования качества цементирования обсадных колонн диаметром 114-340 мм в составе сборок из локатора муфт, модулей термометрии, гамма- и нейтронного каротажа, радиоактивной цементометрии. Основные параметры модуля: компенсированный измерительный зонд И-П-П-И; частота излучения - 20-25 кГц; короткие длины зондов (0,7 м) и базы (0,5 м); наличие третьего приемника для регистрации ФКД зондом стандартной длины (1,5 м) и муфт зондом длиной 0,2-0,3 м; оцифровка сигналов с шагом 2-8 мкс в диапазоне колебаний Р и S волн; диаметр модуля - 90 и 73 мм, длина - 5-5,5 м.