Смекни!
smekni.com

3. геологических задач (стр. 18 из 22)

77. Юматов А.Ю. Распространение упругих продольных волн в пористых горных породах с трещинами и кавернами: Автореф. канд. диссерт./ ВНИИЯГГ. М. 1984. 15с.

78. Althoff G. MWD ultrasonic caliper-advanced detection techniques // SPWLA 39th Annual Logging Symposium. 1998, May 26-29, Abstr. Log Analyst. 1998. V. 39. №2.

79. Andrew W.B., Siddans PhD. A new digital acoustic borehole televiewer // United Kingdom. Robertson Geologging Ltd. s. 1-26.

80. Shear wave acoustic logging system. Пат. 4649525 США, МКИ G01V1/ 40 / Angona F.A., Zemanek J.

81. Attas Wireline Services. Сервисный каталог. 1997. (русск.яз.).

82. Malti directional assemblies for sonic logging / Пат. 4184562 США, МКИ G01V1/40 / Bakemjian B.Y.

83. Baker L.J., Winbow G.A. Multipole p-wave logging in formations altered by drilling // Geophysics. 1988. V.53. № 9. P. 1207-1218.

84. Boonen P., Flowers S. Hostile environment full-wave sonic logging permits fracture evaluation in high-temperature slimhole wells // SPWLA 37th Annual Logging Symposium. 1996, June 16-19, paper FF.

85. Baffin A., Sutherland A. Permeability from waveform sonic data in the Otway basin // SPWLA 37th Annual Logging Symposium. 1996, June 16-19, Abstr. Log Analyst. 1996. V.37. №2.

86. Castagna J.P., Batzle M.L., Eastwood R.L. Relationships between compressional wave and shear wave velocities in elastic silicate rocks // Geophysics. 1985. V. 50. № 4. P. 571-581.

87. Chen S.T. Shear wave logging with quadrupole sources // Geophysics. 1989. V. 54. № 5. P. 590-597.

88. Cheng C.H. Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs // Geophysics. 1981. V. 46. № 7. P. 1042-1053.

89. Cheng C.H. et.al. Effects of in situ permeability on the propagation of Stoneley (tube) waves in a borehole // Geophysics. 1987. V. 52. № 9. P. 1279-1289.

90. Chudy S., McIntyre G., Schuh P.R. Cased hole acoustic logging - a solution to a problem // SPWLA 36th Annual Logging Symposium in Paris. 1995, June 26-29, paper I.

91. Chung J.Y., Chen S.T. Method and apparaturs for multipole acoustic wave generation: Заявка Великобритании № 2158581, МКИ G01V1/40.

92. Computalog. Wellbore knowledge and solutions / Fort Worth, Texas. Certified ISO 9001. 30p.

93. Condessa L.G. Hydrocarbon identification in fresh-water bearing reservoirs using dynamic Poisson's ratio: a case stady // Trans. SPWLA 36th Annual Logging Symposium. 1995, June 26-29, paper K.

94. Crampin S. Evaluation of anisotropy by sher-wave splitting // Geophysics. 1985. V.50. № 1. P. 142-152.

95. Crampin S., Lynn H.B., Booth D.C. Shear-wave VSP's: a powerful new tool for fracture and reservoir description //J. of Petrol. Techol. 1989. V. 41. N°3. P. 283-288.

96. Davis Great Guns Logging, Jnc. (CGG Logging). Open hole and cased hole logging service catalog.

97. Davis T.L., Benson R.D. Characterising fractured reservoirs // World Oil. 1992. V. 213. N°3. P. 63,64,66.

98. Dominguez H., Perez G. Permeability estimation in naturally fractured fields by analysis of Stoneley waves // The Log Analyst. V. 32. 1991. N°3. P. 120-128.

99. Edo T., Ito H., Badri M., El Sheikh M. Fracture and permeability evaluation in a fault zone from sonic waveform data // SPWLA 38th Annual Logging Symposium. 1997, June 15-18, Abstr. Log Analyst. 1997. V. 38.M> 2.

100. Esmersoy C., Kane M., Boyd A., Denoo S. Fracture and stress evaluation using dipole-shear anisotropy logs // SPWLA 36th Annual Logging Symposium. 1995, June 26-29, paper J.

101. Fitzgerald D.D., McGhee B.F., McGuire J.A. Guidelines for 90% Accuracy in Zone-isolation decisions //JPT, 1985, November. P. 2013-2022.

102. Goldberg D., Gant W.T. Shear-wave processing of sonic log waveforms in a limestone reservoir // Geophysics. 1988. V.53. N° 5. P. 668-676.

103. Halliburton Logging Services Chart Book/ 1991, Halliburton publication.

104. Halliburton. Open hole logging. Equipment. V. 2, of 2.

105. Han D., Nur A., Morgan D. Effects of porosity and clay content on wave velocities in sandstones // Geophysics. 1986. V. 51. N° 11. P. 2093-2107.

106. Heysse D.R. Sonic porosite transforms and effects of pore shale and clay distribution / Halliburton Energy Services. X1078. 1995. P. 1-13.

107. Hornby B.E., Luthi S.M., Plumb R.A. Comparison fracture apertures computed from electrical borehole scans and reflected Stoneley wave- an automated interpetation // Trans. SPWLA 31th Annual Symposium. 1990, paper L.

108. Hornby B.E., Pasternack E.G. Analysis of full-waveform sonic data acquired in unconsolidated gas sands // SPWLA 39th Annual Logging Symposium. 1998, May 26-29, Abstr. Log Analyst. 1998. V. 39. M> 2.

109. Joyce B., Patterson D., Thomas J. Advanced interpretation of fractured carbonate reservoirs using four conponent cross dipole analysis // SPWLA 39th Annual Logging Symposium. 1998, May 26-29, Abstr. Log Analyst. 1998. V. 39. N°2.

110. Kazaratos Spyros К., Marion Bruce P. Log-scale seismic for reservoir characterization // SEG Int. Expo, and 66th Annual Meet., Denver. 1996, November 10-15. V. 2. P. 1873-1876.

111. Kitsunezaki C. A new method for shear wave logging // Geophysics. 1980. V.45. № 10. P. 1488-1506.

112. Kitsunezaki C. Some basic problems of shear wave logging by means of the suspension type sonde // J. Mining. Coll. Akita Univ. 1982. A6. №2. P. 93-108.

113. Kitsunezaki C. Receivers and sources in the suspension type shear wave logging/Butsuri tanko. Geophysical Exploration. 1983. V. 36. №6. P. 366-381.

114. Krief M., Garat J., Stellingwerf J., Venire J. A petrophysical interpretation the velocities of P and S wave (full- waveform sonic) // 12th International Formation Evaluation Symposium. 1989, October 24-27.

115. Methods and apparaturs for acoustic logging through casing. [Schlumberger Technology Corp.]: Пат. кл.340-15.5 ВН, (G01V1/40), №3909775 США / Lavigne J С.; Заявл. 26.10.73, № 409.788; Опубл. 30.09.75.

116. Acoustic isolator for a borehole logging tool: Пат. № 5229553 США, МКИ G01V1/40 / Lester R.A., Wilkinson G.J.

117. Focused planar transducer: Пат. № 5044462 США, МКИ G01V1/40 /Maki V.E.

118. Borehole acoustic transmitter: Пат. №4890687 США, МКИ G01V1/40 /Medlin W.L., King G.A.

119. Minear J.W. Full wave sonic logging: a brief perspective // SPWLA 27th Annual Logging Symposium in Houston. 1986, June, paper AAA.

\1Q.Minear J.W., Fletcher C.R. Full-wave acoustic logging //CWLS- SPWLA 24th Annual Symposium in Calgary, 1983, June, paper ЕЕ. Р. 1-13.

121. Moos D.. Dvorkin J. Sonic logging through casing for porosity and fluid characterization in the Wilmington field, CA //SEG / Denver'96 : SEG Int. Expo, and 66th Annual Meet., Denver, Goto, 1996. November 10-15, V. 1-Tulsa (Okla), 1996. C.BG2.5.

122. Motet D., Yver J.P. Combining dipole shear sonic imager and formation microscanner to evaluate fractured formation // AFM Reservoir characterisation Review. 1992. № 4. P. 31-39.

123. Murphy W., Reischer A., Hsu K. Modulus decomposition of compressional and shear velocities in sand bodies // Geophysics, 1993. V. 58, № 2. P. 227-239.

124. Naville C., Beland D., Yver J.P., Perrin J. Detection of permeable fractures by dipole shear anisotropy logging// SPWLA 36th Annual Logging Symposium in Paris, 1995, June 26-29, Abstr. Log Analyst. 1995. V. 36. №2.

125. Ohya S., Ogura K., Jmai T. The suspension PS velocity logging system // 16th Annual Offshore Technol. Conf. in Houston, Texas, 1984, May 7-9. Proc. V.I. P. 291-298.

126. Paillet F.L., Cheng C.H. A numerical investigation of head waves and leahy modes in fluid-filled boreholes // Geophysics. 1986. V.51. № 7. P. 1438-1449.

127. Paillet F.L. Qualitative and quantitative interpretation of fracture permeability using acoustic full-waveform logs // The Log Analyst. V. 32. №3. 1991. P. 256-270.

128. Magnetostrictive transducer for logging tool: Пат. № 5020036 США, МКМ G01V1/40 / Peterman S.G., Katahara K.W.

129. Pilkington P.E. Cement evaluation-past, present and future // JPT, 1992, February. P. 132-140.

130. Pilkington P.E. Pressure needed to reduce microannulus effekt on CBL // Oil and Gas J. 1988. V. 86. № 22. P. 68-74.

131. Prensry S.E, A survey of recent developments and emerging technology in well logging and rock characterization // The Log Analyst. 1994. V. 35. №2. P. 15-45.

132. Priest J. Computing borehole geometry and related parameters from acoustic caliper data // SPWLA 38th Annual Logging Symposium. 1997, June 15-18, Abstr. Log Analyst, 1997. V. 38. №2.

133. Ramamoorthy R., Murphy W.F. III. Fluid identification through dynamic modulus decomposition in carbonate reservoirs // SPWLA 39th Annual Logging Symposium. 1998, May 26-29, Abstr. Log Analyst, 1998. V. 39. №2.

134. Ramamoorthy R., Murphy W. F., Coll C. Total porosity extimation in shaly sands from shear modulus // SPWLA 36th Annual Logging Symposium. 1995, June 26-29, paper H.

135. Transducer system for use with borehole televiewer logging tool: Пат. № 5212353 США, МКИ G01V1/40 / Rambow F., Foggio R.

136. Raymer L.L, Hunt E.R., Gardner J.S. An improved sonic transit time-to-porosity transform // SPWLA 21s1 Annual Logging Symposium, 1980, July 8-11.

137. Borehole liquid acoustic wave transducer: Пат. №5263768 США, МКИ G01Vl/40/Rorden L.H.

138. Saxena V. Hydrocarbon evaluation through modulus decomposition of sonic velocities in shaly sands // SPWLA 37th Annual Logging Symposium. 1996, June 16-19, Abstr. Log Analyst. 1996. V. 37. №2.

139. Schlumberger. Wireline Services Catalog (Сервисный каталог по каротажным работам) Houston. 1995, June (русск. яз.) 111с.

140. Segmented Bond Tool (SBT) / Western Atlas International, Inc. 1990. AT90-251. Rev. 10/90. P.8.

141. Seller D., Edmiston C., Torres D., Goetz J. Field performance of new borehole televiewer tool and associated image processing techniques // Trans SPWLA 31th Annual Logging Symposium. 1990, paper H.

142. Sinha A., Rangel M., Barbato R., Tang X. A new method for deriving permeability from borehole Stoneley waves and its application in the North Mongas field of Eastern Venezuela // SPWLA 39th Annual Logging Symposium. 1998, May 26-29, Abstr. Log Analyst, 1998. V. 39. №2.

143. Smolen J.J. Cased hole logging - A perspective // SPWLA 27th Annual Logging Symposium. 1986, June 9-13, paper K. P. 1-16.

144. Tang X. Fracture hydraulic conductivity estimation from borehole Stoneley wave transmission and reflection data // SPWLA 37th Annual Logging Symposium. 1996, June 16-19, Abstr. Log Analyst. 1996. V. 37. №2.

145. Dipole and quadrupole borehole seismic transducer: Пат. № 494480 Швеции, МКИ G01V1/40 / Tomas E.

146. Tosaya C., Nur A. Effects of diagenesis and clay on compressional velocities in rocks / Geophysical Research Letters. 1982. V. 9, № 1. P. 5-8.

147. Acoustic borehole televiewer: Пат № 5179541. США, МКИ G01V1/40 / Weido V.C.

148. Williams D.M. The acoustic log hydrocarbon indicator // SPWLA 31th Annual Logging Symposium. 1990, paper V. P. 1-22.

149. Williams el. al. Continues acoustic logging in slow formations examples and problems //33th SPWLA Annual Logging Symposium. 1992, paper D.

150. Wu P. Methods for processing sonic data. EP: Заявка № 0162786, МКИ GO IV1/40.

151. Wu X., Wang K. Estimation of permeability from attenuation of the Stoneley wave in a borehole/ SEG / Denver'96 : SEG Int. Expo, and 66th Annual Meet., Denver, Goto, 1996, November 10-15. V. 1 // Tulsa (Oklahoma), 1996. C.BG3.7.

152. Willie M.R.J., Gregory A.R., Gardner L.W. Elastic wave velocities in heterogeneous and porous media // Geophysics. 1956. V. 21. № 1. P. 41-70.

153. Xu S., White R. Poro- elasticity of clastic rocks: a unified model // SPWLA 36th Annual Logging Symposium in Paris. 1995, June 26-29, paper V.

РИС. 1. СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПАКЕТОВ ВОЛН, РАСПРОСТРАНЯЮЩИХСЯ В СКВАЖИНЕ:

а - при невозможности идентификации волн, вступающих после первого периода S волны [131]; б - при допущении распространения волн Лэмба в столбе скважинной жидкости [5]; в - в открытой скважине [120]; г - в обсаженной скважине при условии частичного цементирования [9]

РИС. 2. ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ИНТЕРВАЛЬНЫХ ВРЕМЕН (DT) И ВРЕМЕННЫХ ИНТЕРВАЛОВ СУЩЕСТВОВАНИЯ ВОЛН ЛЭМБА, ПРОДОЛЬНОЙ, ПОПЕРЕЧНОЙ, СТОУНЛИ; ИДЕНТИФИКАЦИЯ ТИПОВ ВОЛН, ЗАРЕГИСТРИРОВАННЫХ В ОБСАЖЕННОЙ СКВАЖИНЕ:

а - анализируемый пакет упругих волн; б - временное поле локальных максимумов коэффициентов корреляции

РИС. 3. СХЕМЫ ИЗМЕРИТЕЛЬНЫХ ЗОНДОВ АК:

а - трехэлементный; 6 - компенсированный с дополнительным третьим приемником ПЗ; в - с антенной монопольных приемников; г - с антеннами монопольных и диполыных приемников; д - сканер с вращающимся совмещенным преобразователем И-П; е - сканер с 8 электронно опрашиваемыми преобразователями И-П; Короткий зонд И-П, расположенный за пределами измерительного зонда, предназначен для измерения скорости упругой волны в жидкости, заполняющей скважину; 1 - электронная схема прибора; 2 - акустический изолятор; И, ИМ - монопольный излучатель; П, ПМ - монопольный приемник; ИД - дипольный излучатель; ПД - дипольный приемник; И-П - преобразователь, совмещающий функции излучателя и приемника

РИС. 4. СХЕМАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ ДИАГРАММ НАПРАВЛЕННОСТИ ИЗЛУЧАТЕЛЯ И ПРИЕМНИКА КОЛЕБАНИЙ (ВВЕРХУ) И КОЛЕБАТЕЛЬНОГО СМЕЩЕНИЯ ЧАСТИЦ ИССЛЕДУЕМОЙ СРЕДЫ (ВНИЗУ) ПРИ ВОЗБУЖДЕНИИ УПРУГИХ ВОЛН МОНОПОЛЬНЫМИ (А), ДИПОЛЬНЫМИ (Б) И КВАДРУПОЛЬНЫМИ (В) ИЗЛУЧАТЕЛЯМИ

РИС. 5. СООТНОШЕНИЕ МЕЖДУ ВОЗМОЖНЫМ КОЛИЧЕСТВОМ ИЗМЕРИТЕЛЬНЫХ КАНАЛОВ И СКОРОСТЬЮ КАРОТАЖА В ЗАВИСИМОСТИ ОТ СКОРОСТИ ПЕРЕДАЧИ ДАННЫХ ПО ЛИНИИ СВЯЗИ ПРИ ШАГЕ ОЦИФРОВКИ 4 МКС И ВРЕМЕННОМ ИНТЕРВАЛЕ ОЦИФРОВКИ 4 МС

РИС. 6. СОПОСТАВЛЕНИЕ ТЕОРЕТИЧЕСКИХ ЗАВИСИМОСТЕЙ МЕЖДУ DT И КП (КРИВЫЕ 1-4) [103, 106, 136, 152] С ЭКСПЕРИМЕНТАЛЬНЫМИ ЗАВИСИМОСТЯМИ (КРИВЫЕ 5-10), ПОЛУЧЕННЫМИ ДЛЯ КОЛЛЕКТОРОВ КОНКРЕТНЫХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ СТРАНЫ [48]