Смекни!
smekni.com

3. геологических задач (стр. 8 из 22)

Все реализованные отечественные телеметрические линии связи (ТЛС) [42,53,69] основаны на принципах, изложенных в ГОСТ'ах 19619-74 и 2676.52-87. Более чем существенным отклонением от требований этих ГОСТ'ов являются характеристики кабельного интерфейса. Большая длина кабеля (5-10 км) и большая его ёмкость (0,25 мкф/км) заставляют снижать предусмотренную ГОСТ'ами частоту от 1 МГц до 20-100 кГц в зависимости от реальной длины кабеля и выбранных фильтров, обеспечивающих компенсацию частотных характеристик кабеля. Такие же принципы и применение того же кода передачи данных Manchester-II заложены в ТЛС зарубежных фирм. Они также применяют частоты передачи сигналов в диапазоне 20-100 кГц, обеспечивая скорость передачи по одному каналу, равную примерно 20-100 кбит/с. Более высокая скорость передачи данных (около 270 кбит/с) достигается при использовании семижильного кабеля и трёх "фантомных" линий передачи [104]. На основе обобщения литературных источников и общения с зарубежными специалистами в [10] указывается на наличие ТЛС со скоростью передачи данных 500 кбит/с. Сведения о широком практическом применении этого достижения отсутствуют.

Особенность акустических методов исследований заключается в необходимости передачи в цифровом виде объёмов информации, превышающих возможности современных ТЛС более чем на 2 порядка. Действительно, для скважинных приборов массового применения, рабочая частота излучателей которых составляет 10-20 кГц, необходима оцифровка в каждом канале измерения волнового пакета длительностью 4-8 мс с дискретностью 2-4 мкс. Отсюда следует: количество передаваемых точек (samplers per sensor) оцифровки равно 1000-2000 при объёме передачи каждой точки 20 бит. Если выбрать дискретность опроса по глубине, равную 0,2 м (что для многих задач, например, определения интервалов обводнения, совсем неприемлемо), объём передаваемой информации в интервале глубин 1000 м составит 12500 кбит/с для двухэлементного зонда И-П, вдвое больше - для трёхэлементного зонда И-П-П и вчетверо больше для компенсированного зонда И-П-П-И. Для сравнения: для любого вида электрического каротажа объём передаваемой информации при той же дискретности передачи составит 12,5 кбит/с.

Если принять, что коммерческая скорость АК, по крайней мере, для приборов массового применения, не должна снижаться менее какого-то допустимого значения (скажем, 400-600 м/ч), то окажется, что для передачи волновых пакетов АК в цифровом виде количество измерительных каналов не может быть достаточно большим ( рис. 5 ). Выход из этого тупика сегодня находят в применении радикальных решений: передаче в приборах массового применения начальной части волновых пакетов, ограничившись регистрацией параметров только продольной волны, увеличении шагов дискретизации сигналов во времени и по глубине [53], передаче информации АК цифровыми ТЛС в аналоговом виде в специально выделенных временных окнах [42,69 и др.].

Наиболее просто, потому что для этого ничего не надо изменять, осуществляется передача волновых пакетов в аналоговом виде. Её реализуют, используя общий канал цифровой телеметрии, выделив в нём специальные временные окна для передачи аналоговых сигналов АК [69], или передавая волновые пакеты по третьей жиле кабеля, а синхроимпульсы - по каналу цифровой телеметрии с целью ослабления влияния переходных процессов [42]. В АК-сканере [44] волновые пакеты 8 преобразователей оцифровываются в скважинном приборе, заносятся в промежуточную память, а затем передаются по каротажному кабелю в аналоговом виде в частотном диапазоне, который соответствует аналоговым приборам АК. В наземном регистраторе аналоговые сигналы повторно оцифровываются.

Известны две полностью завершённые отечественные разработки приборов АК, в которых применена цифровая передача данных. В модуле ВАК [75] использован трёхэлементный измерительный зонд. Волновые пакеты перед оцифровкой логарифмируются, чем достигается сужение динамического диапазона передаваемых сигналов, уменьшение объёмов информации и возможность применения 8-разрядного АЦП. В каротажной лаборатории осуществляется восстановление первоначальной формы сигналов. Скорость каротажа - до 1000 м/ч.

В многоэлементном приборе АКД-8 [16,53] волновые пакеты, воспринятые восемью приёмниками при одном срабатывании излучателя, оцифровываются двумя 12-разрядными АЦП, работающими в режиме параллельно-последовательного преобразования сигналов в чётных и нечётных измерительных каналах. Дискретность преобразования равна 10 икс, время наблюдения - 5120 мкс от момента излучения. Оцифрованные данные записываются в буферную память и затем по командам управления, передаваемым с поверхности по интерфейсу ТСМ2-100, поступают в наземный регистрирующий комплекс. При скорости передачи, равной 100 кбит/с, длительность передачи данных от восьми приёмников с одной глубины составляет 900 мс. При дискретности опроса по глубине, равной 0,2 м, скорость каротажа составляет 800 м/ч.

Авторы последней разработки указывают [16], что большая (4-20 мкс) дискретность оцифровки волновых пакетов исключает применение для определения скорости (интервальных времён) упругих волн методов, основанных на прослеживании первых вступлений. Представляется однако, что большие интервалы дискретности несут другую опасность. Оцифровка данных через 10-20 мкс на частотах АК (5-20 кГц) затрудняет или вовсе исключает возможность использования динамических (амплитуды и затухание) и частотных характеристик для разделения упругих волн с применением различных приёмов фильтрации и суммирования сигналов. Дискретность измерений по глубине, равная 0,2 м, ограничивает применение АК для оценки трещиноватых, тонко чередующихся пород, характера насыщенности коллекторов, то есть для решения именно тех сложных задач, для которых создаются многоэлементные приборы АК.

Таким образом, реализованные скорости передачи цифровых сигналов по каротажному кабелю сдерживают применение цифровых приборов АК. Применение цифровых ТЛС требует поиска компромисса между числом измерительных каналов, дискретностью оцифровки, шагом квантования по глубине, скоростью каротажа и перечнем решаемых задач. Эти затруднения будут устранены при создании цифровой ТЛС со скоростью передачи данных по одному каналу, равной 270-400 кбит/с. Из устных сообщений известно, что над такими ТЛС активно работают ведущие зарубежные фирмы.

2.6. Поверка и калибровка приборов АК

Эти средства ( табл.8 ) создавались в Российской Федерации (точнее, в СССР) и за рубежом для поверки и калибровки приборов АК, предназначенных для измерения параметров (скорости распространения Vp и эффективного затухания aр ) продольной головной волны [50,51,62,63,104]. В зарубежных фирмах первичные средства включают контрольные аттестованные скважины, в которых в единых условиях аттестовываются все производимые фирмой приборы. Контрольные скважины, имеющиеся в отдельных организациях РФ (например, в трестах "Сургутнефтегеофизика" и "Ноябрьскнефтегазгеофизика"), вроде бы полностью аналогичны зарубежным, но выполняют, скорее всего, роль вторичных средств поверки, так как первичную поверку должен выполнять изготовитель. Десятилетний опыт стандартизации и калибровки акустических цементомеров в таких скважинах подтверждает их несомненную полезность.

Вторичные средства представлены аттестованными отрезками труб, изготовленных из различных материалов (чаще всего, отрезков металлических обсадных труб), сегментов таких труб либо металлических лент, которые устанавливают в зажимах, закрепляемых на скважинном приборе. Контроль работоспособности приборов в процессе скважинных измерений повсеместно выполняется в интервалах незацементированной обсадной колонны, значение Dtp (точнее, DtL) в которых равно 185-187 мкс/м.

В последнее время в отечественной литературе активно обсуждается пригодность указанных средств поверки и полевой калибровки на новом этапе применения АК в связи с оцифровкой полных волновых пакетов и последующим выделении в них колебаний волн Лэмба, продольной, поперечной и Стоунли [47, 59]. Дискутируются два подхода: возможность применения калибровочных средств, разработанных для измерения параметров Р волны, и необходимость создания метрологических средств, пригодных для калибровки параметров измерения каждой (L, S, St) волны в отдельности.

В пользу первого подхода можно привести сохранение (в смысле - неизменение), прежних требований - достоверного воспроизведения амплитуд и времён прихода к приёмнику упругих колебаний в диапазоне скоростей распространения от 7500 до 1500 м/с и коэффициентов затухания в диапазоне 20-40 дБ/м от максимальной амплитуды.

Перечисленные документы [50,51,62,63,104] относят это требование к продольной волне. Волна Лэмба, как нормальная продольная волна в ограниченном пространстве, полностью подчиняется этому требованию. Волны поперечная и Стоунли отличаются от продольной значениями скоростей распространения и амплитуд, которые не выходят за пределы требований перечисленных документов (1400-4000 м/с; 20-40 дБ/м). Более низкие частоты колебаний поперечной волны (в 1,2-1,3 раза по сравнению с Р волной) и волны Стоунли (2,5-4 кГц) попадают в полосу пропускания амплитудно-частотной характеристики каналов передачи сигналов (3-30 кГц на уровне 0,5-0,7), которая устанавливается для всех уже имеющихся приборов АК. От возможных перегрузок приемоусилительный тракт защищён тем, что в современных приборах АК коэффициент усиления регулируется автоматически или по команде наземного регистрирующего устройства. Следовательно, если прибор проверен и откалиброван с помощью метрологических средств для продольной волны, то колебания остальных волн - Лэмба, поперечной, Стоунли - будут зарегистрированы без искажений. К тому же, объективно канал регистрации не идентифицирует упругие колебания, как принадлежащие определённой волне, и не накладывает на них каких-либо дополнительных условий.