— Що ще відомо в задачі? (Учні I класу в кожнім із трьох рядів вирили по 7 ям для дерев).
— Зобразите це графічно.
— Що запитується в задачі? (Скільки усього ям для дерев вирили учні I і II класів.)
Подальша робота складається з підрахунку загального числа клітинок геометричної фігури.
У залежності від того, на які частини ми розіб'ємо розглянуту фігуру, одержимо і різні вирази для підрахунку загального числа клітинок.
Розглянемо тепер таку задачу:«У магазин привезли 12 ящиків з яблуками, по 8 кг у кожнім. До обідньої перерви було продано 9 ящиків. Скільки кілограмів яблук залишилося продати після обідньої перерви?»
— Про що говориться в задачі? (У магазин привезли ящиківи з яблуками.)
— Що відомо в задачі? (У магазин привезли 12 ящиків з яблуками, по 8 кг у кожнім).
Якщо домовимося, що одному кілограму яблук відповідає клітинка учнівського зошита, то як графічно зобразити ящики з яблуками? (У виді прямокутної смужки, що містить 8 клітинок).
— А як зобразити графічно 12 ящиків з яблуками? (У виді прямокутника, що складає з 12 рівних прямокутних смужок, кожна з який містить 8 клітинок).
— Зобразіть це. Що ще відомо в задачі? (До обідньої перерви було продано 9 ящиків).
— Зобразимо це графічно. (Учні відраховують у прямокутнику, 9 прямокутних смужок, починаючи з першої зверху смужки).
— Про що запитується в задачі? (Скільки кілограмів яблук залишилося продати після обідньої перерви.)
Для того щоб відповісти на запитання задачі, підраховують число ящиків, що залишилося - їх 3. Тому що в кожній ящиківі по 8 кг яблук, то, отже, залишилося продати 8 • 3=24 (кг).
Розглянемо графічне розв’язання оберненої задачі відповідно розглянутої вище: «У магазин привезли 12 ящиків з яблуками, по 8 кг у кожнім. До обідньої перерви було продано кілька ящиків. Після обідньої перерви залишилося продати 24 кг яблук. Скільки ящиків з яблуками було продано до обідньої перерви?»
Запис розв’язання задачі по «сходинках»:
1) 8 x 12 (кг) х= (8 x 12 - 24) : 8
2) 8 x 12 — 24 (кг) х = (96 — 24) : 8
3) (8 x 12 — 24) : 8 (ящ.) х = 9
Графічне розв’язання задачі. Користаючись тими ж умовними позначками, що і при графічному розв’язанні прямої задачі, і аналізуючи умову, одержимо креслення.
У задачі потрібно довідатися, скільки ящиків з яблуками було продано до обідньої перерви. Тому що на малюнку 19 ящиківа зображена у виді прямокутної смужки, що містить 8 кліток, те очевидно, що до обідньої перерви було продано 9 ящиків з яблуками.
Після розв’язання задачі дітям корисно задати питання:
— Якби після обідньої перерви було продано не 24 кг яблук, а більше (менше), то що можна сказати про кількість яблук, проданих до обідньої перерви: більше чи менше.
Такі додаткові питання будуть сприяти виявленню функціональної, залежності між величинами.
Задачі на знаходження частки двох добутків
Розглянемо задачу: «Юра обвів чотири ряди клітинок, по 6 клітинок у кожнім ряді, а Сергій обвів два ряди клітинок, по 3 клітинки в кожнім ряді. В скількох разів більше обвів клітинок Юра, ніж Сергій?»
Розв’язуючи задачу шляхом складання формули, учень у зошиті робить наступні записи:
Юра — 4 ряди по 6 клітинок
Сергій — 2 ряди по 3 клітинки
1) 6 x 4 (клітинок) х = (6 x 4) : (3 x 2)
2) 3 x 2 (клітинок) х = 24:6
3) (6 x 4) : (3 x 2) х = 4
Відповідь: у 4 рази.
Розглянемо тепер графічне розв’язання задачі.
— Про що говориться в задачі? (Про те, що Юра і Сергій обводили клітинки в зошитах.)
— Що відомо в задачі (Юра обвів чотири ряди клітинок, по 6 клітинок у кожнім ряді.)
— Зобразите це графічно. Що ще відомо в задачі? (Сергій обвів два ряди клітинок, по 3 клітинки в кожнім ряді.)
— Зобразіть це графічно.
Про що запитується в задачі? (У скількох разів більше обвів клітинок Юра, чим Сергій.)
Щоб відповісти на запитання задачі, треба знайти, скільки разів прямокутник, зображений на малюнку
Відповідь: 4 рази.
Розглянемо графічне розв’язання задачі, оберненої відповідно розглянутої вище прямої задачі: «Юра обвів кілька рядів клітинок, по 6 клітинок у кожнім ряді. Сергій обвів два ряди клітинок, по 3 клітинки в кожнім ряді. Юра обвів клітинок у 4 рази більше, ніж Сергій. Скільки рядів клітинок обвів Юра?»
Моделювання як важливий засіб навчання розв’язування задачі
Діюча програма початкової школи вимагає розвитку самостійності в дітей у розв’язанні текстових задач. Кожен учень повинний уміти коротко записати умову задачі, ілюструючи його за допомогою малюнка, чи схеми креслення, обґрунтувати кожен крок в аналізі задачі й у її розв’язанні, перевірити правильність розв’язання. Однак на практиці ці вимоги виконуються далеко не цілком, що приводить до серйозних прогалин у знаннях і навичках учнів.
Задача (II клас): «Для ремонту школи першого дня привезли 28 колод, а другого дня привезли на 4 машинах по 10 колод. Скільки усього колод привезли за два дні?»
Правильні розв’язання:
28 + 10 x 4 = 68 (б.) чи: 1) 10 x 4 = 40 (б.)
2) 28 + 40 = 68 (б.)
Помилкові розв’язання:
I варіант
1) 4+10=14 (б.)
2) 28+14=42 (б.)
II варіант
1) 28:4=7 (б.)
2) 7+10=17 (б.)
III варіант
1) 28:4=7 (б.)
2) 7 x 10=70 (б.)
Чимало помилок допущено другокласниками й у такій задачі: «У радгоспі працюють 37 трактористів, шоферів на 8 більше, ніж трактористів, а комбайнерів на 5 менше, ніж шоферів. Скільки комбайнерів працює в радгоспі?»
Правильні розв’язання:
(37+8)—5=40 (к.) чи: 1) 37+8=45 (ш.)
2) 45—5=40 (к.)
Помилкові розв’язання:
I варіант
1) 37—8=29 (т.)
2) 29+5=34 (к.)
II варіант
1) 37+8=45 (т.)
2) 45:5=9 (к.)
Найбільше число помилок допустили другокласники в розв’язанні задачі на пропорційні величини: «У трьох однакових ящиківах 21 кг апельсинів. Скільки кілограмів апельсинів у 8 таких ящиківах?»
Правильні розв’язання:
(21:3) x 8=56 (кг) чи: 1) 21:3=7 (кг)
2) 7 x 8=56 (кг)
Помилкові розв’язання:
I варіант
21—8=13 (кг)
II варіант
1) 21:3=7 (кг)
2) 7+8=15 (кг)
III варіант 21 + 8=29 (кг)
IV варіант
1) 21—3=18 (кг)
2) 18+8=26 (кг)
Учні III класу погано справилися з наступною задачею: «У майстерні було 240 м ситцю. Коли зшили кілька платтів, витрачаючи на кожне по 3 м, в майстерні залишилося 90 м ситцю. Скільки платтів зшили?»
Правильні розв’язання:
(240—90):3=50 (пл.) чи:
1) 240—90=150 (м)
2) 150:3 =50 (пл.)
Помилкові розв’язання:
I варіант
1) 240 x 3=720 (м)
2) 720:90=8 (пл.)
II варіант
1) 240:3=80 (м)
2) 90—80=10 (пл.)
III варіант
1) 240:3=80 (пл.)
2) 90:3=30 (пл.)
3) 80+30=110 (пл.)
Розглянуті помилки свідчать про те, що учні, що не справилися з розв’язанням задач, не змогли уявити собі життєвої ситуації, про яку йдеться в задачі, не усвідомили зв’язок між величинами в ній, залежності між даними і шуканим, а тому просто механічно маніпулювали числами.
Чому ж учні допустили так багато помилок навіть при повторному розв’язанні знайомих задач? Аналіз результатів проведеної роботи, бесіди з вчителями й учнями дозволяють зробити висновок про те, що одна з основних причин помилок, що допускаються дітьми, у розв’язанні текстових задач — неправильна організація первинного сприйняття учнями умови задачі і її аналізу, що проводяться без належної опори на життєву ситуацію, відбиту в задачі, без її предметного чи графічного моделювання. Як правило, у процесі аналізу використовуються лише різні види короткого запису умови чи задачі готові схеми, а створення моделі на очах у чи дітей самими дітьми в процесі розбору задачі застосовується вкрай рідко. До того ж при фронтальному аналізі і розв’язанні задачі вчителі нерідко обмежуються правильними відповідями двох-трьох учнів, а інші записують за ними готові розв’язання без глибокого їхнього розуміння.
Для усунення відзначених недоліків необхідно насамперед рішуче поліпшити методику організації первинного сприйняття й аналізу задачі, щоб забезпечити усвідомлений і доказовий вибір арифметичної дії всіма учнями. Головне для кожного учня на цьому етапі — зрозуміти задачу, тобто усвідомити, про що ця задача, що в ній відомо, що потрібно довідатися, як зв'язані між собою дані, які відносини між даними і шуканими і т.п. Для цього необхідно з I класу учити дітей розбивати текст задачі на частини і моделювати ситуації, відбиті в задачі.
Що ж розуміється під моделюванням умови задачі?
Моделювання в широкому змісті слова — це заміна дій з реальними предметами діями з їхніми зменшеними зразками, моделями, муляжами, макетами, а також з їхніми графічними замінниками: малюнками, кресленнями, схемами і т.п. При цьому малюнки можуть зображувати реальні предмети (людей, тварин, рослини, машини і т.п.) чи ж бути умовними, схематичними, тобто зображувати реальні предмети умовно, у виді різних фігур: квадратів, кружків, прямокутників і т.п.
Креслення являє собою також умовне зображення предметів, взаємозв'язків між ними і взаємини величин за допомогою відрізків і з дотриманням визначеного масштабу.
Креслення, на якому взаємозв'язки і взаємини передаються приблизно, без точного дотримання масштабу, називається схематичним кресленням, чи схемою.
Предметне і графічне моделювання математичної ситуації при розв’язанні текстових задач давно застосовується в шкільній практиці, але без належної системи і послідовності, що під неправильним розумінням ролі наочності в навчанні і розвитку учнів. Дотепер багато вчителів неправильно думають, що наочність обов'язково повинна бути тільки на початковому етапі навчання, а з розвитком абстрактного мислення в дітей вона своє значення втрачає. Звідси в II—III класах основним засобом наочності при аналізі задач стає короткий запис умови задачі і лише зрідка застосовуються готові схеми і таблиці. А тим часом наочність, особливо графічна, потрібна на всьому протязі навчання як важливий засіб розвитку більш складних форм конкретного мислення і формування математичних понять. Як відзначає Л. Ш. Левенберг, «малюнки, схеми і креслення не тільки допомагають учнем у свідомому виявленні схованих залежностей між величинами, але і спонукують активно мислити, шукати найбільш раціональні шляхи розв’язання задач, допомагають не тільки засвоювати знання, але й опановувати умінням застосовувати їхній» .