Смекни!
smekni.com

Ультрафиолетовый излучение (стр. 4 из 5)

При выполнении газосварочных и газорезательных работ интенсивность УФ-потока меньше, чем при электросварке. Температура источника (факела горелки) при газовой резке и газовой сварке в несколько раз ниже, чем электрической дуги, поэтому и интенсивность УФ-излучения при газовых работах, намного ниже, чем при электросварке. Указанные в таблице 27 максимальные значения в основном определялись при розжиге горелки, на близком расстоянии от факела. Реально же при газосварке (газорезке) в рабочей зоне эти уровни еще ниже.

С гигиенической точки зрения опасность ручной электросварки, особенно при выполнении ремонтных работ, обусловлена проведением работ на непостоянных рабочих местах, часто в "нестандартных" условиях, преимущественно при выполнении "срочных" ремонтных работ, когда не всегда есть возможность применить в полном объеме необходимые меры защиты. При выполнении таких работ технологические условия и технические параметры сварочного процесса более вариабельны, что обуславливает широкий диапазон колебаний уровней УФ-излучения. Так, разница между минимальными и максимальными параметрами УФ-потока при ручной сварке составляет более 12 раз, а при полуавтоматической - около 6 раз. Например, при ремонтных работах с использованием ручной дуговой электросварки время нахождения в условиях непосредственного УФ-облучения работников составляет около 40 % смены (средние данные), а при полуавтоматической сварке это время увеличивается до 64 % смены. Более точно время непосредственной занятости электросварочными работами, самого процесса сварки можно определить на основе учета количества использованных расходных материалов (электродов, сварочной проволоки) и времени сгорания электрода.

Измерения интенсивности УФ-излучения на разных расстояниях от сварочной дуги выявили особенности распределения УФ-потока с определением коэффициентов ослабления в зависимости от расстояния до источника. При увеличении расстояния от 0,1 до 0,4 м коэффициент ослабления составляет в среднем по всему спектру 2,7 раза, при увеличении расстояния до одного метра - в среднем 8,4 раза. Снижение интенсивности потока УФ-излучения на расстоянии двух метров от источника происходит в среднем по всему спектру в 35 раз.

Следует обратить особое внимание и на возможную опасность влияния на работающих отраженного и рассеянного излучения, составляющего до 20 % от прямого потока, что свидетельствует о необходимости проведения контроля и измерений уровней потока, отраженного от разных поверхностей на территории сварочного поста и смежных участках. Наибольшими отражающими свойствами обладают металлические поверхности, при этом в большей степени отражаются лучи спектра УФ-А, а в коротковолновой области (УФ-С) это выражено в меньшей степени. Высокие уровни отраженного потока определены при сварке крупногабаритных деталей в основном за счет многократного переотражения, при работах в ограниченных пространствах, достигая в УФ-С диапазоне 0,04 Вт/м2. Последние представляются наиболее опасными для работников, так как в этих случаях не всегда есть возможность применить необходимые средства коллективной защиты, оборудовать такие места системами вентиляции, что увеличивает профессиональный риск за счет более высоких концентраций вредных веществ (оксидов марганца, сварочного аэрозоля и др.), а также повышенного облучения сварщика от прямого и отраженного, рассеянного потоков ультрафиолетового излучения.

При проведении контроля за состоянием условий труда, соблюдением правил охраны труда и техники безопасности отдельно следует выделить группу работников разных профессий (так называемые "прихватчики"), выполняющих совместные со сварщиком работы по фиксации деталей крупногабаритных конструкций в момент наложения первичного шва. Эти работы выполняют как сами сварщики (разных специальностей), так и работники других профессий - слесари механосборочных работ, монтажники и др. Особенность таких работ - кратковременность использования сварочной дуги, ее "импульсный" характер во время "прихватки" деталей свариваемой конструкции. Указанные работы, как правило, выполняются в защитных очках, при этом уровни излучения составляют 0,4-0,8 Вт/м2, превышая допустимые величины. Общая продолжительность работ по прихватке составляет до 15-30 мин за смену, при этом дозовые нагрузки достигают 720 Дж/м2, что выше расчетных гигиенических норм. Тем не менее в условиях производства (особенно в цехах и участках по сборке объемных металлоконструкций и др.) довольно часто многие "прихватчики" пренебрегают СИЗ органа зрения.

Видеодисплейные терминалы, экраны и мониторы также могут быть источником излучения в ультрафиолетовом диапазоне. Реальная интенсивность генерируемого излучения и его спектральный состав зависит от технической конструкции конкретного видеотерминала, режимов работы, возможного защитного экранирования, цвета люминофора и других факторов. Выполненные нами измерения интенсивности потока УФ-излучения от мониторов ПЭВМ показали, что регистрируемые уровни на исследуемых образцах ВДТ были, как правило, ниже допустимых санитарных норм.

Высокие уровни излучения определены при использовании спектральных источников. Так, на рабочем месте копировщика печатных форм при использовании галогенной ртутной лампы ДРГТ плотность потока на расстоянии 2 м от источника составляет в рабочей зоне 0,07 Вт/м2 (спектр УФ-В), при воздействии отраженного потока излучения - 0,02-0,03 Вт/м2 и еще выше на расстоянии 0,6 м от источника - до 0,4 Вт/м2. В спектре УФ-С эти значения равны соответственно 0,9-0,22-6,5 Вт/м2 и значительно превышают установленные допустимые величины.

Бактерицидное действие ультрафиолетовых лучей с длиной волны 0,20-0,28 мкм определило широкое применение облучателей и других источников коротковолнового излучения для стерилизации, обеззараживания воздушной среды, других объектов в лечебных учреждениях, различных лабораториях, а также в бытовых целях. При работе бактерицидных облучателей разных типов (потолочные, настенные, комбинированные) уровни облучения вблизи источника составляют 0,02-4,0 Вт/м2 в спектре УФ-С, от 0,01 до 1,5 Вт/м2 и выше в спектре УФ-В и до 1,0 Вт/м2 в спектре УФ-А. В центре облучаемых помещений, рабочей зоне эти величины в 2-5 раз ниже. Примером мощного источника УФ-излучения служит лампа ОКН-11 (около 1,0 Вт/м2 в коротковолновой и средневолновой частях спектра и 5-6 Вт/м2 в спектре УФ-А).

При некоторых видах термообработки, других высокотемпературных процессах (например, металл в зоне расплава, расплавленное кварцевое стекло, ацетиленовое пламя, низкоамперные сварочные дуги и др.) не исключено формирование УФ-излучения, однако это возможно только при температуре не менее 2 000 0С. Учитывая, что в доступной литературе отсутствует полный перечень всех источников УФ-излучения и условий его формирования, для уточнения необходимости выполнения измерений в УФ-диапазоне от тепловых, высокотемпературных источников при их оценке спектральную область излучения можно определить расчетным путем. Так, п. 4.2 МР 105-9807-99 предлагает метод, позволяющий получить приблизительные величины длины волны с максимумом энергии и ориентировочно определить спектральные границы излучения источника. Для этого используют уравнение:

max = С / Tк,

где С - постоянная Вина, равная 2 880 мкм град.,

Тк - абсолютная температура источника, Тк = (t 0С + 273)0.

Полученные данные определяют длину волны с максимумом энергии источника. Так, для тепловых излучателей с температурой источника 1 000-1 500 0С lmax = 2,3-1,6 мкм и находится в инфракрасной области. При более высоких температурах (3 500-4 000 0С и выше) значение max уменьшается, достигая видимого диапазона (0,7 мкм и менее). В этих случаях - высокие температурные параметры и мощность оборудования, большие поверхности излучателя - левая (коротковолновая) граница всего потока излучения может находиться в УФ-области, что является основанием для измерений данного фактора производственной среды.

МР 105-9807-99 выделяет две основные группы источников УФ-излучения. К первой относятся электрогазосварочные работы, плазменные технологические процессы, некоторые другие высокотемпературные источники ультрафиолетового излучения, рассмотренные выше.

Ко второй группе относится большая группа спектральных источников - различных облучателей, ламп и других источников света, являющихся источниками УФ-излучения.

Облучатели, облучательные установки и другие источники оптического излучения разделяют на тепловые и люминесцент­ные, а различные источники света, в свою очередь, на лампы накаливания (ЛН) и газоразрядные лампы (ГЛ). Температура нити накала у обычных вольфрамовых ЛН составляет около 2 500 0К, а у ламп с повышенной цветопередачей - до 4 000 0К. Граница полосы пропускания УФ-излучения у ламп из обычного стекла составляет около 300 нм, а из специальных стекол еще меньше. С учетом этого, а также высокой мощности отдельных типов ЛН некоторые из них могут быть источниками излучения в УФ-области, как и галогенные ЛН, у которых минимальная температура нити накала выше 1 600 0С, а колба ламп изготовлена из кварцевого стекла.