Смекни!
smekni.com

Иммунология, которой нас обучают вирусы (стр. 1 из 4)

Zinkernagel R.M. Immunology taught by viruses

Выживание вирусов зависит от выживания чувствительных к ним хозяев. Иммунная система позвоночных и вирусы выработали, следовательно, взаимно комплементарные грани. Взаимоотношения между вирусом и хозяином, находящимися в равновесии друг с другом, показывают, что понятия иммунологической специфичности и памяти, лучше всего определять в биологических терминах и, что зрелая иммунная система не различает между «своим» и «чужеродным». Скорее В-клетки распознают «шаблон» антигена, в то время, как Т-клеточные ответы зависят от локализации, путей распространения и скорости накопления антигена внутри лимфатических органов.

Исторически иммунология развивалась из исследований по патогенезу и предотвращению инфекционных заболеваний (1). Необходимость в очищенных антигенах, которые до недавнего времени не были доступны непосредственно из инфекционных агентов, приводила к использованию в иммунологии модельных антигенов. Ответы на модельные антигены: белки, гаптены и синтетические олигопептиды, являлись инструментами при выявлении многих основополагающих правил (законов) в развитии иммунного ответа (2, 3); однако, обобщения на основе таких результатов, могут оказаться не совсем верными, поскольку такие ответы не являются важными для выживания хозяев. Понятия специфичности, памяти и толерантности, ключевые параметры иммунного ответа, теперь могут быть пересмотрены вновь, уже для инфекционных агентов, благодаря громадному методическому прогрессу в биохимии, молекулярной биологии, эмбриологии и физиологии животных. Эти параметры обобщаются здесь для того, чтобы прийти к общей концепции иммунобиологии, которая отражает коэволюционное равновесие, достигнутое между иммунной системой и вирусами с целью обеспечения выживания обоих, и вируса, и хозяина (4-10). Представлены три основных сценария: (1) иммунитет доминирует над цитопатическими вирусами, (2) нецитопатические вирусы доминируют над иммунной системой, (3) оба сценария тонко сбалансированы во время острой или хронической инфекции (5, 11-15, рис. 1). На природу взаимодействия влияют параметры вируса, такие как цитопатогенность, скорость накопления, тропизм к клеткам и тканям, чувствительность к другим механизмам устойчивости (например, к интерферонам) и наличие хозяев. А также переменные самой иммунной системы, включающие специфичность, скорость развития и продолжительность гуморального и клеточного иммунного ответа (1, 4-10) вместе с неспецифическими эффекторными механизмами, такими как комплемент, гормоноподобные факторы (интерлейкины) и фагоциты.

Специфический гуморальный иммунитет опосредуется антителами, которые продуцируются плазматическими клетками и поступают в кровь. Плазматические клетки, в свою очередь, происходят из В клеток (предшественников) (1, 9,12-16). Такие антитела распознают конформационные детерминанты в белках, углеводах, многомерных (particulate) антигенах (таких как вирусы и бактерии), на слизистых оболочках и в крови. Однако, за исключением мест повреждений, антитела не могут проникать в плотные культуры. Клеточный иммунитет опосредуется Т клетками, дифференцирующимися в тимусе и несущими Т клеточные рецепторы, специфичные к небольшим пептидам, которые представлены молекулами главного комплекса гистосовместимости (МНС) (17, 18). Пептиды, выделяющиеся из внутренних белков, компонентов самой клетки или инфицированной вирусом клетки, представляются, как правило, комплексами МНС 1 класса. Они распознаются CD8+ Т клетками, способными разрушать клетки с помощью цитотоксического эффекта или высвобождением цитокинов (возможны оба механизма, действующие одновременно). Пептиды, выделяющиеся из белков, подвергнутых фагоцитозу, и которые находятся в организме хозяина или происходят из инфекционного агента, расщепляются и представляются молекулами МНС 2 класса. Такие пептиды распознаются высвобождающими цитокин CD4+ Т хелперными клетками, которые обычно не являются литическими. Благодаря распознаванию, зависящему от молекул МНС, Т клетки наблюдают за изменениями в состоянии клеток организма. Такие их характеристики, вместе со способностью к постоянной рециркуляции, а после их активации к переселению в периферические органы, делает Т клетки хорошо подготовленными для наблюдения за целостностью клеток в твердых тканях. Специфическое распознавание антигена антителами и Т клетками обычно инициирует мощные неспецифические эффекторные механизмы, которые контролируют и устраняют инфекционные агенты с помощью активации комплемента, привлечения клеток, отвечающих за воспалительные процессы, фагоцитоза, разрушения клеток или вмешательства в функциональную деятельность клетки (1).

Важные эффекторные механизмы для восстановления после первичной инфекции, устойчивости против повторной инфекции или защиты физиологически иммуно-дефицитного потомства, обобщены в Таблице 1. Распространение цитопатических вирусов наиболее эффективно останавливается с помощью растворимых диффундирующих антивирусных интерлейкинов (19), препятствующих репликации вируса. Это сообщает окружающим клеткам способность противостать как репликации вируса, так и прямому повреждению клеток, который приносит вирус. Распространение нецитопатических вирусов останавливается с помощью CD8+ цитотоксических Т клеток (CTLs), которые разрушают инфицированные клетки хозяина до того, как вирус успевает произвести потомство (вторичные вирусные частицы). Такой механизм также высвобождает вирусные антигены, которые индуцируют Т хелперный и антительный ответы. Из-за того, что протективный цитотоксический Т клеточный ответ вызывает повреждения в инфицированных клетках хозяина, равновесие между скоростью распространения вируса и кинетикой Т клеточного ответа будет предопределять либо иммунную защиту, то есть выведение вируса из организма, или иммунопатологию. Нейтрализующие антитела очень эффективны при предотвращении повторной инфекции и против гематогенного (через кровь) распространения вируса (16).

Специфичность

Специфичность к антигену определяется силой взаимодействия между антителами и трехмерной структурой белка или углевода (11-15, 20, 21), а также между Т клеточными рецепторами и комплексами пептида с молекулами МНС (22). Хотя эти параметры возможно измерить in vitro, часто неясно, как можно их связать с защитой против инфекционных агентов или токсинов in vivo. Следовательно, специфичность лучше всего определяется по действию, то есть по способности антител или Т клеток распознавать различные структуры – пептиды или важные антигены инфекционных агентов, например, различные серотипы вируса, не обладающие способностью вызывать перекрестное взаимодействие антител – имеющие значение для выживания хозяина. Определение термина специфичность зависит от метода ее измерения. Нейтрализующая активность in vitro против вируса обычно хорошо соотносится с протективной способностью in vivo и зависит от аффинности (авидности) антител в пределах от 108 до 1010 л/моль (11-15, 20). Напротив, методы, в которых исследуют связывание антител с антигеном, могут обнаруживать аффинности более низкого значения (вплоть до 106 л/моль), а соответствующие корреляции менее значимы. Протективную специфичность Т клеток на основе анализа in vitro определить еще труднее, поскольку аффинность при таком взаимодействии не может быть измерена простым и доступным способом (17, 22). Тем не менее, исследования предполагают, что функциональные характеристики Т клеток in vivo измеряются значительно точнее по сравнению со многими методами in vitro, такими как включение Н3-тимидина в качестве меры Т клеточной пролиферации, или высвобождение интерлейкинов в супернатанты культуры клеток (23). Таким образом, можно говорить о том, что иммунобиологическую специфичность лучше всего оценивать непосредственно in vivo. Для антител – по присутствию или отсутствию перекрестной защиты (11-15), для перекрестно реагирующих или специфических хелперных CD4+ Т клеток – по способности к переключению ответа антител с IgM на IgG или по активации макрофагов (1) и для CD8+ (CTLs) цитотокических Т лимфоцитов – по уменьшению титров вируса и защите от иммунопатологического повреждения клеток твердых тканей и органов хозяина (24, 25). Однако, точная природа протективного ответа или ключевого параметра такого ответа часто неизвестна. Например, там, где происходит цитолиз Т клетками, выделяется интерлейкин и вырабатываются антитела, какой механизм является самым важным? При выработке антител, что является самым существенным, аффинность антитела (связывание одного антитела с одним антигенным сайтом), авидность антитела (объединенная связующая сила взаимно переплетенных сайтов антигена и антител) или концентрация антител в сыворотке, культуре? Какова роль соматических мутаций в молекуле антитела и их влияние на иммунную защиту?

Зародышевые антитела и аффинное созревание. Цитопатические вирусы не должны быть слишком успешны в уничтожении своих хозяев, иначе они подвергают опасности свое собственное выживание. Благодаря такой совместной эволюции остается открытым вопрос, развивались ли гены зародышевых антител таким образом, чтобы охватить имеющиеся в наличии специфичности, или цитопатические инфекционные агенты благодаря их большому количеству и мутациям адаптировались к огромному иммунологическому разнообразию. Одним механизмом, посредством которого ответ антител хозяина адаптируется к инфекционным агентам, может быть аффинное созревание антител. Данный процесс имеет место при отборе соматических точечных мутаций, в большинстве случаев происходящих в области связывания специфических рецепторов IgG В клеток. Показано, что такой процесс ведет к общему увеличению аффинности/авидности IgG к гаптенам с течением времени (3-10).

В аффинном созревании нейтрализующих антител к цитопатическим вирусам, возможно, нет необходимости (поскольку хозяин слишком быстро бы умер; требуется 4-6 дней для аффинного созревания антител) или аффинное созревание должно происходить очень рано (15, 20, 21). В противоположность этому, медленное аффинное созревание антител к нецитопатическим вирусам может привести к более широкому его распространению (внутри организма хозяина) и более продолжительной передаче вируса (во внешнюю среду). Предполагается, что аффинное созревание является более экономичным механизмом, обеспечивающим установление иммунологической памяти. Аффинное созревание также позволяет иммунному ответу «поймать» мутантный вирус, который появляется во время инфекции, однако, обе эти идеи еще нуждаются в подтверждении (26).