Смекни!
smekni.com

Теоретические основы и методы системного анализа оптимизации управления принятия решений и (стр. 3 из 8)

Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.

Под большой системой понимается совокупность материальных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Материальные ресурсы - это сырье, материалы, полуфабрикаты, денежные средства, различные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.

Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.

Характерные особенности больших систем. К ним относятся:

· большое число элементов в системе (сложность системы);

· взаимосвязь и взаимодействие между элементами;

· иерархичность структуры управления;

· обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.

Сложность системы

Пусть имеется совокупность из n элементов. Если они изолированы, не связаны между собой, то эти n элементов еще не являются системой. Для изучения этой совокупности достаточно провести не более чем n исследований. В общем случае в системе связь элемента А с элементом Б не эквивалентна связи элемента Б с элементом А, и поэтому необходимо рассматривать n(n-1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведения) системы будет равно 2^n. Даже при небольших n это фантастическое число. Например, пусть n== 10. Число связей n(n-1) = 90.

Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким. Следовательно, необходимо использовать ЭВМ и разрабатывать методы, позволяющие сократить число обследуемых состояний БС. Сокращение числа состояний БС - первый шаг в формальном описании систем. В свою очередь серийные ЭВМ то же имеют пусть большие но всё же ограниченные ресурсы. Отсюда вытекает вопрос, если система является гипербольшой и продолжающей динамически развиваться, то какими методами пользоваться при её изучении. По определению А. И. Берга такую систему можно описать с помощью математических языков (теории дифференциальных уравнений и алгебры Буля). Т.е. основы вытекают из дискретной математики и теории чисел. Но, если гиперсистемы очень больших размеров, с числом своих элементов превосходящим диапазон серийных ЭВМ, а именно такие нас ожидают в недалёком будущем, то их исследование с помощью теории дифференциальных уравнений и алгеброй Буля будет недостаточно. Поиски методов в исследовании таких систем лежат в истоках методов модулярной алгоритмики предложенной профессором кафедры информатики Сургутского Государственного Университета д.т.н. Инютиным С.А..

2. Методы системного анализа

2.1 Основные понятия

На сегодняшний день основным является так называемый системный подход (СсП) к научному познанию и исследованиям. Как расширение этого подхода можно рассматривать также синергетический (СгП) и информационный подходы (ИфП).

Системный подход базируется на целостном видении исследуемых объектов с точки зрения целей исследования. В отличие от «бытового» подхода (от простого к сложному, от элемента к системе), при решении задач он исходит из того, что исследование (или решение задачи) начинается с целей исследования, которые на основе анализа объекта исследования редуцируются до задач анализа и формирования моделей элементов (до решения подзадач) с учетом взаимосвязи элементов. При этом организуются два взаимодействующих по принципу обратной связи процесса:

1) декомпозиция исследования (задачи) на этапы (подзадачи);

2) разработка, выполнение этапов (решение подзадач) и интегрирование результатов, полученных на этапах, для достижения цели исследования (решения задачи).

Синергетический подход– метод учета и использования случайного фактора (хаоса) для организации систем и управления ими. Хаос выступает при этом не как дезорганизующий фактор, а как необходимое условие появления более сложной и организованной системы. Развитие и построение сложных самоорганизующихся систем, в том числе систем с искусственным интеллектом, связывается с синергетикой.

В качестве примитивного примера СгП может служить решение задачи укладки множества гвоздей разного размера в банку. Обычный, детерминированный, подход сводится к тому, что гвозди надо отсортировать, рассчитать оптимальный способ укладки и произвести укладку. Синергетический подход - надо потрясти банку (внести фактор случайности) и они улягутся (самоорганизуются).

Информационный подход– развитие СсП на информационные системные процессы, характерной особенностью которых является отсутствие закона сохранения энергии.

Применение СсП к разрешению проблемы гармонии и дисгармонии приводит к принципам функционирования гомеостатических систем. Изучается управление, обеспечивающее существование систем в условиях антагонизма двух и более подсистем.

Введем еще несколько, используемых в теории систем терминов.

Концепция – совокупность основных понятий с их связями (система понятий), выражающая суть некоторой идеи. В число основных понятий входят, как правило:

1) цель и средства ее достижения,

2) критерии эффективности путей (альтернатив) достижения целей,

3) модель, описывающая зависимости между альтернативами,

5) модель принятия решений.

Системная парадигма – основные элементы той или иной концепции, модель постановки проблем и их решения.

Катастрофа – скачкообразное изменение состояния при малых изменениях входных и фазовых координат системы.

Зона бифуркации – кризисное состояние с непредсказуемым исходом; район, ситуация, область значений переменных, где возможна катастрофа.

Одним из важнейших принципов при организации сложных систем является принцип компенсации энтропии: энтропия системы может быть уменьшена только за счет увеличения энтропии другой системы. В целенаправленных системах это осуществляется за счет увеличения энтропии внешней среды.

Когнитивная структуризация – метод формирования гипотезы (топологической модели) о функционировании объектов на основе опыта и представлений человека.

Когнитивная карта – это знаковый (взвешенный) орграф, отражающий причинно-следственные связи между элементами системы, как их понимает человек.

2.2 Методология системного анализа

Это конкретизация системного подхода в отношении проблем управления и проектирования систем путем использования математических и эвристических процедур.

СсП – это методология, которая указывает направление поиска и разработки методов анализа для решения проблем. СсП характеризуется принципами:

1) элемент объекта описывается в той мере, в которой он важен для понимания объекта; могут рассматриваться структурные и функциональные аспекты и методы;

2) неотделимость свойств системы от условий ее существования, т.е. учет эффектов взаимодействия со средой;

3) связи и взаимообусловленность свойств целого и элементов (в том числе интегративное качество, эмержентность);

4) источник преобразования системы и ее функций лежит обычно в самой системе; поэтому основное направление преобразований – самоорганизация, базирующаяся на широко понимаемом принципе обратной связи.

Системный анализ (СА) конкретизирует СсП путем разработки моделей систем (Мс) и моделей требований (Мт), то есть является инструментом СсП. Методы СА различаются уровнем определенности Мс и Мт.

Случай, когда эти модели формализованы (выражены в виде математических соотношений), относится обычно к области науки, называемой исследованием операций. Если же в Мс и Мт в качестве элемента содержится субъективный фактор (человек), то этот случай относится к СА.

2.3 Аналитические методы системного анализа

Это, в основном, формализованные методы, использующие математизированного вида модели систем и модели принятия решений при ограничениях, наложенных различного рода допущениями при моделировании.

Формализовано описываются такие этапы, как:

а) процедура генерирования альтернатив (например, перебором);

б) оценка альтернатив по системе показателей на основе моделей системы;

в) выбор решения (модель компромисса).

По виду моделей Мс и Мт различают такие, например, задачи:

· анализ свойств (характеристик);

· синтез систем (синтез топологии, структуры, параметров) при детерминированных условиях среды и системы;

· то же при случайных характеристиках среды и системы (задачи массового обслуживания);