Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.
Под большой системой понимается совокупность материальных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Материальные ресурсы - это сырье, материалы, полуфабрикаты, денежные средства, различные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.
Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.
Характерные особенности больших систем. К ним относятся:
· большое число элементов в системе (сложность системы);
· взаимосвязь и взаимодействие между элементами;
· иерархичность структуры управления;
· обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.
Сложность системы
Пусть имеется совокупность из n элементов. Если они изолированы, не связаны между собой, то эти n элементов еще не являются системой. Для изучения этой совокупности достаточно провести не более чем n исследований. В общем случае в системе связь элемента А с элементом Б не эквивалентна связи элемента Б с элементом А, и поэтому необходимо рассматривать n(n-1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведения) системы будет равно 2^n. Даже при небольших n это фантастическое число. Например, пусть n== 10. Число связей n(n-1) = 90.
Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким. Следовательно, необходимо использовать ЭВМ и разрабатывать методы, позволяющие сократить число обследуемых состояний БС. Сокращение числа состояний БС - первый шаг в формальном описании систем. В свою очередь серийные ЭВМ то же имеют пусть большие но всё же ограниченные ресурсы. Отсюда вытекает вопрос, если система является гипербольшой и продолжающей динамически развиваться, то какими методами пользоваться при её изучении. По определению А. И. Берга такую систему можно описать с помощью математических языков (теории дифференциальных уравнений и алгебры Буля). Т.е. основы вытекают из дискретной математики и теории чисел. Но, если гиперсистемы очень больших размеров, с числом своих элементов превосходящим диапазон серийных ЭВМ, а именно такие нас ожидают в недалёком будущем, то их исследование с помощью теории дифференциальных уравнений и алгеброй Буля будет недостаточно. Поиски методов в исследовании таких систем лежат в истоках методов модулярной алгоритмики предложенной профессором кафедры информатики Сургутского Государственного Университета д.т.н. Инютиным С.А..
2.1 Основные понятия
На сегодняшний день основным является так называемый системный подход (СсП) к научному познанию и исследованиям. Как расширение этого подхода можно рассматривать также синергетический (СгП) и информационный подходы (ИфП).
Системный подход базируется на целостном видении исследуемых объектов с точки зрения целей исследования. В отличие от «бытового» подхода (от простого к сложному, от элемента к системе), при решении задач он исходит из того, что исследование (или решение задачи) начинается с целей исследования, которые на основе анализа объекта исследования редуцируются до задач анализа и формирования моделей элементов (до решения подзадач) с учетом взаимосвязи элементов. При этом организуются два взаимодействующих по принципу обратной связи процесса:
1) декомпозиция исследования (задачи) на этапы (подзадачи);
2) разработка, выполнение этапов (решение подзадач) и интегрирование результатов, полученных на этапах, для достижения цели исследования (решения задачи).
Синергетический подход– метод учета и использования случайного фактора (хаоса) для организации систем и управления ими. Хаос выступает при этом не как дезорганизующий фактор, а как необходимое условие появления более сложной и организованной системы. Развитие и построение сложных самоорганизующихся систем, в том числе систем с искусственным интеллектом, связывается с синергетикой.
В качестве примитивного примера СгП может служить решение задачи укладки множества гвоздей разного размера в банку. Обычный, детерминированный, подход сводится к тому, что гвозди надо отсортировать, рассчитать оптимальный способ укладки и произвести укладку. Синергетический подход - надо потрясти банку (внести фактор случайности) и они улягутся (самоорганизуются).
Информационный подход– развитие СсП на информационные системные процессы, характерной особенностью которых является отсутствие закона сохранения энергии.
Применение СсП к разрешению проблемы гармонии и дисгармонии приводит к принципам функционирования гомеостатических систем. Изучается управление, обеспечивающее существование систем в условиях антагонизма двух и более подсистем.
Введем еще несколько, используемых в теории систем терминов.
Концепция – совокупность основных понятий с их связями (система понятий), выражающая суть некоторой идеи. В число основных понятий входят, как правило:
1) цель и средства ее достижения,
2) критерии эффективности путей (альтернатив) достижения целей,
3) модель, описывающая зависимости между альтернативами,
5) модель принятия решений.
Системная парадигма – основные элементы той или иной концепции, модель постановки проблем и их решения.
Катастрофа – скачкообразное изменение состояния при малых изменениях входных и фазовых координат системы.
Зона бифуркации – кризисное состояние с непредсказуемым исходом; район, ситуация, область значений переменных, где возможна катастрофа.
Одним из важнейших принципов при организации сложных систем является принцип компенсации энтропии: энтропия системы может быть уменьшена только за счет увеличения энтропии другой системы. В целенаправленных системах это осуществляется за счет увеличения энтропии внешней среды.
Когнитивная структуризация – метод формирования гипотезы (топологической модели) о функционировании объектов на основе опыта и представлений человека.
Когнитивная карта – это знаковый (взвешенный) орграф, отражающий причинно-следственные связи между элементами системы, как их понимает человек.
2.2 Методология системного анализа
Это конкретизация системного подхода в отношении проблем управления и проектирования систем путем использования математических и эвристических процедур.
СсП – это методология, которая указывает направление поиска и разработки методов анализа для решения проблем. СсП характеризуется принципами:
1) элемент объекта описывается в той мере, в которой он важен для понимания объекта; могут рассматриваться структурные и функциональные аспекты и методы;
2) неотделимость свойств системы от условий ее существования, т.е. учет эффектов взаимодействия со средой;
3) связи и взаимообусловленность свойств целого и элементов (в том числе интегративное качество, эмержентность);
4) источник преобразования системы и ее функций лежит обычно в самой системе; поэтому основное направление преобразований – самоорганизация, базирующаяся на широко понимаемом принципе обратной связи.
Системный анализ (СА) конкретизирует СсП путем разработки моделей систем (Мс) и моделей требований (Мт), то есть является инструментом СсП. Методы СА различаются уровнем определенности Мс и Мт.
Случай, когда эти модели формализованы (выражены в виде математических соотношений), относится обычно к области науки, называемой исследованием операций. Если же в Мс и Мт в качестве элемента содержится субъективный фактор (человек), то этот случай относится к СА.
2.3 Аналитические методы системного анализа
Это, в основном, формализованные методы, использующие математизированного вида модели систем и модели принятия решений при ограничениях, наложенных различного рода допущениями при моделировании.
Формализовано описываются такие этапы, как:
а) процедура генерирования альтернатив (например, перебором);
б) оценка альтернатив по системе показателей на основе моделей системы;
в) выбор решения (модель компромисса).
По виду моделей Мс и Мт различают такие, например, задачи:
· анализ свойств (характеристик);
· синтез систем (синтез топологии, структуры, параметров) при детерминированных условиях среды и системы;
· то же при случайных характеристиках среды и системы (задачи массового обслуживания);