I’ (x, y) = аx + by + c, (2.6)
де значення коефіцієнтів а, b і c оцінені, використовуючи метод найменших квадратів, а потім надлишкове освітлення зменшують як результат різниці
І’’ (x, y) = І (x, y) - I’ (x, y). (2.7)
Після нормалізації, розподіл зображень підвікон стає більш компактним і стандартизованим, що допомагає скорочувати складність подальшої класифікації.
Процедура виявлення обличчя класифікує зображення по значеннях простих ознак. Є багато стимулів для використання ознак замість опікселів. Найзагальніша причина - ознака може кодувати спеціалізовану проблемну область, що важливо при використанні обмеженої кількості учбових даних. Для цієї системи також існує другий критичний стимул: система заснована на ознаках діє набагато швидше, ніж аналогічна заснована на пікселях. Використані прості ознаки нагадують базові функції Хаара, які запропонував Viola [19]. Найістотнішими є три види ознак (рис.2.5). Значенням двохпрямокутної ознаки є різниця між сумою пікселів в межах двох прямокутних рівновеликих і однаково орієнтованих регіонів. Трьохпрямокутна ознака обчислюється як різниця від суми пікселів за межами центрального прямокутника, і суми пікселів самого прямокутника в центрі. Нарешті чотирьохпрямокутна ознака обчислює різницю між діагональними парами прямокутників.
Рис.2.5 Ознаки, що подаються в нейронну мережу:
A,B) двохпрямокутна, C) трьохпрямокутна, D) чотирьох прямокутна
Прямокутні ознаки можуть бути обчислені дуже швидко використовуючи проміжне представлення для зображення, яке Viola [19] назвав інтеграл зображення. Інтегралом зображення в точці x, y містить суму пікселів вище і лівіше x, y:
(2.8)
де ii (x, y) - це інтеграл зображення, а i (x, y) є початкове зображення. Використання наступної пари рекурсій:
s (x, y) = s (x, y - 1) + i (x, y) (2.9)
ii (x, y) = ii (x - 1, y) + s (x, y) (2.10)
де s (x, y) - це сума ряду, s (x,-1) = 0, і ii (-1, y) = 0.
Інтеграл зображення може бути обчислений одним проходом над початковим зображенням. Використовуючи інтеграл зображення, будь-яка прямокутна сума може бути обчислена чотирма посиланнями в масив. Ясно, що різниця між двома прямокутними сумами може бути обчислена у восьми посиланнях. Очевидно, що з використанням інтегралу зображення відпадає потреба маштабувати початкове зображення.
В даній розробці використано мережу зі зворотнім розповсюдженням, чия процедура навчання є найбільш ефективною. Алгоритм розповсюдження сигналів помилки від виходів ШНМ до її входів, в напрямі, зворотньому прямому розповсюдженню сигналів в звичному режимі роботи навчання ШНМ одержав назву процедури зворотнього розповсюдження (рис.2.6):
1. Подати на входи мережі один з можливих образів і в режимі звичного функціонування ШНМ, коли сигнали розповсюджуються від входів до виходів, розрахувати значення останніх.
де M - число нейронів в шарі n-1 з врахуванням нейрона з постійним вихідним станом +1, що задає зсув; yi (n-1) =xij (n) - i-й вхід нейрона j шару n.
2. Розрахувати d (N) для вихідного шару по формулі
(2.12)Розрахувати по формулі зміни ваг Dw (N) шару N.
3. Розрахувати по формулах
відповідно d (n) і Dw (n) для всієї решти шарів, n=N-1,...1.4. Скоректувати всю вагу в ШНМ за формулою:
(2.10)5. Якщо помилка мережі істотна, перейти на крок 1. Інакше - кінець.
Рис.2.6 Діаграма сигналів в мережі при навчанні по алгоритму зворотного розповсюдження: А) взаємодія сигналів у внутрішньому шарі, А) взаємодія сигналів у вихідному шарі, С) виправлення ваг
Труднощі, пов'язані з розпізнанням обличчя, можуть бути віднесені до наступних категорій:
Поза. Зображення обличчя змінюються у відповідності до орієнтації пари обличчя-камера, тому деякі лицьові особливості, як наприклад око або ніс, можуть частково або цілком бути за завадами.
Присутність або відсутність структурних компонентів. Лицьові особливості, як наприклад, бороди, вуса, і окуляри можуть бути присутні або ні. Є велика кількість мінливості серед цих компонентів зокрема форма, колір, і розмір.
Вираз обличчя. Форма облич є безпосередньо пов'язаний з виразом обличчя персони.
Завади. Обличчя можуть бути частково приховані іншими об'єктами. У зображенні з групою людей, деякі обличчя можуть частково заховати інші.
Орієнтація зображення. Зображення обличчя безпосередньо видозмінюється у відповідності до обертання оптичної осі фотоапарата.
Умови зображення. Коли зображення сформоване, чинники, як наприклад освітлення (спектри, початкове розповсюдження і інтенсивність) і характеристики фотоапарата (сенсорна відповідь, лінзи) впливають на вираз обличчя.
Хоча розпізнавання обличчя - це високорівнева візуальна проблема, - в нашому методі залучається досить небагато структур. Ми скористаємося частиною цих структур, пропонуючи схему для розпізнавання, яке засноване на підході теорії інформації, прагнучи кодувати найдоречнішу інформацію в групі облич, які краще всього відрізнятимуть їх один від одного. Підхід перетворює зображення обличчя в малий набір характеристичних даних, які є головними компонентами учбового набору зображень облич. Схема функціонує за методом головних компонент, який показав себе як найбільш ефективний серед інших методів.
В даній розробці вибраний метод розпізнавання обличчя, що називається метод головних компонент (Principal Component Analysis, PCA), що стискує простір облич без істотних втрат інформативності. Він полягає в лінійному ортогональному перетворенні вхідного вектора X розмірності N у вихідний вектор Y розмірності M < N. При цьому компоненти вектора Y є некорельованими і загальна дисперсія після перетворення залишається незмінною. Матриця X складається зі всіх зразків зображень навчального набору. Розв’язавши рівняння
, одержуємо матрицю ортонормованих власних векторів , де - коваріаційна матриця для X, а - діагональна матриця власних значень. Вибравши з підматрицю , що відповідає найбільшим власним числам, одержимо, що перетворення , де - нормалізований вектор з нульовим математичним очікуванням, характеризує велику частину загальної дисперсії і відображає найістотніші зміни X. Вибір перших M головних компонент розбиває векторний простір на головний (власний простір) , що містить головні компоненти, і його ортогональне доповнення . Застосування цього методу для задачі розпізнавання людини по зображенню обличчя має наступний вигляд (рис.2.7). Вхідні вектори є центрованими і приведеними до єдиного масштабу зображеннями облич. Власні вектори, обчислені для всього набору зображень облич, називаються власними обличчями (eigenfaces) [3].Рис 2.7 Приклад зображень власних векторів (власних облич)
Для кожного зображення обличчя обчислюються його головні компоненти. Звичайно береться від 5 до 200 головних компонент. Решта компонентів кодує дрібні відмінності між обличчями і шум. Процес розпізнавання полягає в порівнянні головних компонент невідомого зображення з компонентами решти зображень.
Метод головних компонент так само застосовується для виявлення обличчя на зображенні. Для облич значення компонент у власному просторі мають великі значення, а в доповненні власного простору - близькі до нуля. По цьому факту можна знайти, чи є вхідне зображення обличчям. Для цього перевіряється величина помилки реконструкції: чим більше помилка, тим більше ймовірність, що це не обличчя.
При зміні ракурсу зображення, наступає момент, коли цей метод при розпізнаванні починає реагувати більше на ракурс зображення, ніж на міжкласові відмінності. Класи при цьому більше не є кластерами у власному просторі. Це розв'язується додаванням в навчальну вибірку зображень в різних ракурсах. При цьому власні вектори втрачають обличчеподібну форму. При зміні кута повороту голови, головні компоненти викреслюють криві у власному просторі, які однозначно ідентифікують обличчя людини і по яких можна провести розпізнавання. Ці криві були названі власними сигнатурами (eigensignatures). По максимумах власних сигнатур було так само відмічено, що найбільшу інформативність має зображення обличчя в напівпрофіль [4].
Основна перевага застосування аналізу головних компонент - це зберігання і пошук зображень у великих базах даних, реконструкція зображень. Основний недолік - високі вимоги до умов зйомки зображень. Зображення повинні бути одержані в близьких умовах освітленості, однаковому ракурсі і повинна бути проведена якісна попередня обробка, що приводить зображення до стандартних умов (масштаб, поворот, центрування, вирівнювання яскравості, відсікання фону). Небажана наявність таких чинників, як окуляри, зміни в зачісці, виразі обличчя і інших внутрішньокласових варіацій.