Смекни!
smekni.com

Програма Пошук обличчя людини у відеопотоках стандарту Mpeg-4 (стр. 5 из 5)

Собівартість години роботи на комп'ютері визначається співвідношенням:


. (3.12)

Підставляємо значення в останню формулу й отримаємо:

.

Розраховуємо прямі витрати на виконання магістерської роботи, які визначаються добутком:

, (3.13)

де

- собівартість години роботи на комп’ютері;
- час необхідний для розробки програмного продукту. Підставляємо значення й одержуємо:

.

Накладні витрати, що включають витрати на освітлення, опалення і т.п., приймаються в розмірі 40-50% від суми прямих витрат:

.

Загальні витрати на виконання магістерської роботи:

. (3.14)

Підставляємо дані й одержуємо:

Ціна програмного продукту визначається співвідношенням:

, (3.15)

де В - витрати на виконання дипломного проекту;

P - рівень рентабельності, в нашому випадку P = 10;

K - коефіцієнт, що залежить від науково-технічного рівня, в нашому випадку К = 1,3.

Підставляємо ці значення й отримаємо ціну програмного продукту, яка дорівнює:

.

Річний економічний ефект визначається таким чином:

, (3.16)

де

- витрати на розв’язання задачі традиційними методами;

- періодичність розв’язку задачі, для нашого випадку T=100;

- приведені витрати.

Для визначення параметру

використовується формула:

, (3.17)

де

- трудомісткість на складання документу, вимірюється в годинах;

- заробітна плата виконавця за одну годину.

Підставляємо значення в останню формулу й одержуємо:


.

Для визначення параметру

використовується формула:

, (3.18)

де

- загальний об’єм вихідного тексту програмного додатка;

- собівартість години роботи на комп’ютері;

- продуктивність праці розробників програмного забезпечення;

- нормативно-галузевий коефіцієнт (
);

- ціна програмного продукту.

Отже, приведені витрати дорівнюють:

.

Таким чином, річний економічний ефект рівний:

.

Джерела, використані при розробці

1. Головко В.В. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями. - Брест: БПИ, 1999. - 260 с.

2. Sung K.,Poggio T. Learning Human Face Detection in Cluttered Scene // Computer Analysis of Images and Patterns. - 1995. - №4. - P.432-439.

3. Graham D.,Allinson N. Face Recognition Using Virtual Parametric Eigenspace

Signatures // Image Processing and its Applications. - 1997. - №21. - P.123-129.

4. Belhumeur P., Hespanha J. Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1997. - №19. - P.711-720.

5. Hallinan P.,Gordon G. Two - and Three-Dimensional Patterns of the Face. - Natick: A. K. Peters Ltd., 1999. - 260 p.

6. Lanitis A.,Taylor C. Automatic Interpretation and Coding of Face Images Using Flexible Models // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1997. - №19. - P.743-756.

7. Wiskott L.,Fellous J. - M. Face Recognition by Elastic Bunch Graph Matching // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1997. - №19. - P.775-779.

8. Duc B.,Fischer S. Face Authentication with Gabor Information on Deformable Graphs // IEEE Trans. on Pattern Analysis and Machine Intelligence. - 1999. - №8. - P.504-516.

9. Wurtz R. Object Recognition Robust Under Translations, Deformations, and Changes in Background // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1997. - №19. - P.769-775.

10. Grudin M.,Lisboa P.compact Multi-level Representation of Human Faces for Identification // Image Processing and its Applications. - 1997. - №4. - P.111-115.

11. Самаль Д. B., Старовойтов В. K. Выбор признаков для распознавания на основе статистических данных // Цифровая обработка изображений. - 1999. - №3. - P.100-114.

12. Gutta S.,Wechsler H. Face Recognition Using Hybrid Classifiers // Pattern

Recognition. - 1997. - №30. - P.539-553.

13. Самаль Д. B., Старовойтов В. K. Методика автоматизированного распознавания людей по фотопортретам // Цифровая обработка изображений. - 1999. - №4. - P.81-85.

14. Самаль Д. B. Построение систем идентификации личности на основе антропометрических точек лица // Цифровая обработка изображений. - 1998. - №2. - P.72-79.

15. Brunelli R.,Poggio T. Face Recognition: Features Versus Templates // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1993. - №15. - P.235-241.

16. Хорн Б. Зрение роботов. -М.: Мир, 1989. - 488 c.

17. Кейт Д. Видео без секретов, 4-е изд. -М.: Вильямс, 2005. - 953 с.

18. Люгер Л., Джордж Ф. Искусственный интелект: стратегии и методы решения сложных проблем, 4-е изд. -М.: Вильямс, 2005. - 864 с.

19. Viola P.,Jones M. Object Robust Real-Time Face Detection // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2004. - №26. - P.435-440.