Параметр
Полученная точка
б)
в)
Параметр
г)
Критерий останова вычислительной процедуры имеет вид :
Критерий останова J является составным. При этом его компоненты имеют различный вес в зависимости от того, каков характер поведения оптимизируемой функции в окрестности экстремума. Если в районе экстремума оптимизируемая функция изменяется по типу «глубокая впадина», то больший вклад в численное значение критерия J вносит первое слагаемое, а второе при этом быстро уменьшается. Напротив, если оптимизируемая функция изменяется по типу «пологое плато», то первое слагаемое быстро становится малым и поэтому второе слагаемое вносит больший вклад в величину критерия J.
Модификация метода
Описанный «классический» вариант построения алгоритма метода Нелдера-Мида обладает конструктивным недостатком, который состоит в следующем. Предположим, что оптимизируемая функция, для простоты, двух переменных имеет вид глубокого оврага с очень пологим дном. Тогда может случиться так, что симплекс, который в рассматриваемом случае представляет собой треугольник, в какой-то момент двумя вершинами ляжет на дно оврага, а третья окажется на его склоне. При этом на очередном шаге произойдет переброс этой вершины на другой склон, а затем редукция или сжатие симплекса. Если склон оврага крутой, то эта процедура повторится много раз, в результате чего симплекс сожмется и может сработать критерий останова, хотя до точки минимума еще может быть очень далеко. Естественное усовершенствование алгоритма состоит в следующем. После срабатывания критерия останова целесообразно построить над центром тяжести сжавшегося симплекса новый, размеры которого соответствуют исходному симплексу. Пусть координаты центра тяжести сжавшегося симплекса образуют вектор
Найдем теперь координаты точки
Координаты центра тяжести этого симплекса образуют вектор
Теперь координаты точки
где
Подставляя вычисленные значения
2.2 Градиентный метод с дроблением шага
Большей эффективностью обладают итерационные процедуры, в которых приближение к минимуму осуществляется сразу по всем переменным. При этом задача состоит в нахождении последовательности векторов
Методы построения таких последовательностей называют методами спуска. Пусть
Выберем произвольным образом точку
Рассмотрим вопрос о выборе направления
Введем
Здесь
В соответствии с (2.3)
Тогда
Вычислим
Теперь, чтобы для любого
При этом
Выбрав каким-либо образом
Общее рекуррентное соотношение имеет вид :
Различные варианты градиентных процедур отличаются друг от друга способом выбора
Полученное соотношение (2.7) обеспечивает построение последовательности точек