Прямая и окружность - две наиболее простые и вместе с тем наиболее замечательные по своим свойствам кривые. Любой человек знаком с прямой и окружностью больше, чем с другими кривыми. Но пусть он не думает, что ему хорошо известны все важнейшие свойства прямых и окружностей. Знает ли он, например, что если вершины двух треугольников АВС и A'B'C' лежат на трех прямых, пересекающихся в одной точке 5 (рис. 1), то тогда три точки М, К., L пересечения соответственных сторон треугольников АВ с А'В', ВС с В'С' и АС с А'С' должны находиться на одной и той же прямой?
Читателю, конечно, известно, что точка М, которая движется по плоскости, оставаясь на равных расстояниях от двух неподвижных точек F1 и F2 той же плоскости, т. е. так, что MF1= MF2; описывает прямую (рис. 2). Но, вероятно, он затруднится ответить, какую кривую опишет точка М, если ее расстояние до точки F1 будет в определенное число раз превосходить расстояние до точки F2 (например, вдвое, как на рис. 3). Оказывается, что этой кривой является окружность. Следовательно, если точка М движется по плоскости так, что ее расстояние до одной из двух неподвижных точек F1 и F2 плоскости будет изменяться пропорционально расстоянию до другой точки:
MF1 = kMF2,
то М будет описывать либо прямую (когда коэффициент пропорциональности k равен единице), либо окружность (когда коэффициент пропорциональности отличен от единицы).
Рис. 4.
Рассмотрим кривую, описываемую точкой М так, что сумма расстояний этой точки до двух неподвижных точек F1 и F2 остается неизменной. Возьмем нить, концы ее привяжем к двум булавкам и воткнем эти булавки в лист бумаги, оставляя сначала нить ненатянутой. Если оттянуть теперь нить с помощью вертикально поставленного карандаша и затем передвигать карандаш, слегка придавливая его к бумаге и следя за тем, чтобы нить была натянутой (рис. 4), то острие М карандаша опишет кривую овальной формы (похожую на сплющенный круг); она называется эллипсом.
Чтобы получить полный эллипс, придется перекинуть нить на другую сторону от булавок, после того как будет описана одна половина эллипса. Очевидно, что сумма расстояний от острия М карандаша до булавочных проколов F1 и F2 остаётся неизменной во все время движения; эта сумма равна длине нити.
Рис. 5.
Проколы булавок отмечают на бумаге две точки, называемые фокусами эллипса. Слово фокус в переводе с латинского означает «очаг», «огонь»; оно оправдывается следующим замечательным свойством эллипса.
Если изогнуть узкую полоску хорошо отполированного металла по дуге эллипса и поместить точечный источник света («огонь») в одном фокусе, то лучи света, отразившись от полоски, соберутся в другом фокусе; поэтому и во втором фокусе будет также виден «огонь» - изображение первого (рис. 5.).
Приложим к нижнему краю классной доски линейку и будем катить по ней обруч или круг (картонный или деревянный), прижимая его к линейке и к доске. Если прикрепить к обручу или кругу кусок мела (в точке соприкосновения его с линейкой), то мел будет вычерчивать кривую (рис. 37), называемую циклоидой (что по-гречески значит «кругообразная»). Одному обороту обруча соответствует одна «арка» циклоиды MM'M''N', если обруч будет катиться дальше, то будут получаться еще и еще арки той же циклоиды.
Рис. 6.
Чтобы построить на бумаге приближенно одну арку циклоиды, описанную при качении обруча диаметром, равным, например, трем сантиметрам, отложим на прямой отрезок, равный 3х3,14 = 9,42 см.
.Получим отрезок, длина которого равна длине обода обруча, т. е. длине окружности диаметром в три сантиметра. Разделим далее этот отрезок на некоторое число равных частей, например на 6, и для каждой точки деления изобразим наш обруч в том его положении, когда он опирается именно на данную точку (рис. 38), занумеровав эти положения цифрами:
О, 1, 2, 3, 4, 5, 6.
Чтобы перейти из одного положения в соседнее, обруч должен повернуться на одну шестую полного оборота ^так как расстояние между соседними точками деления равно шестой части окружности). Поэтому если в положении 0 мел будет находиться в точке М0, то в положении 1 он будет лежать в точке M1 - на одной шестой окружности от точки касания, в положении 2 - в точке М2 - на две шестых от точки касания и т. д. Чтобы получить точки M1, M2, М3 и т.д., нужно лишь производить засечки соответствующей окружности, начиная от точки касания, радиусом, равным
Рис. 7.
1,5 см, причем в положении 1 нужна одна засечка, в положении 2 - две засечки, выполненные одна за другой, в положении 3 - три засечки и т. д. Теперь для вычерчивания циклоиды остается соединить точки
М0, M1, М2, М3, M4, M5, M6
плавной кривой (на глаз).
Среди многих замечательных свойств циклоиды отметим одно, из-за которого она заслужила громко звучащее мудреное название: «брахистохрона». Это название составлено из двух греческих слов, означающих «кратчайший» и «время».
Рассмотрим такой вопрос: какую форму следует придать хорошо отшлифованному металлическому желобу, соединяющему две заданные точки А и В (рис. 8.), чтобы полированный металлический шарик скатывался по этому желобу из точки А в точку В в кратчайшее время? На первый взгляд кажется, что нужно остановиться на прямолинейном желобе, так как только вдоль него шарик пройдет кратчайший путь от А до В. Однако речь идет не о кратчайшем пути, а о кратчайшем времени; время же зависит не только от длины пути, но и от скорости, с которой бежит шарик. Если желоб прогнуть вниз, то его часть, начиная от точки А, будет круче опускаться вниз, чем в случае прямолинейного желоба, и шарик, падая по
Рис. 8.
нему, приобретет скорость большую, чем на участке такой же длины прямолинейного желоба. Но если сделать начальную часть очень крутой и сравнительно длинной, то тогда часть, примыкающая к точке В, будет очень пологой и также сравнительно длинной; первую часть шарик пройдет быстро, вторую очень медленно и шарик может запоздать с приходом в точку
Рис. 9.
В. Итак, желобу, по-видимому, нужно придавать вогнутую форму, но делать выгиб не слишком значительным.
Итальянский физик и астроном Галилей (1564 - 1642) думал, что желоб кратчайшего времени нужно выгибать по дуге окружности. Но швейцарские математики братья Бернулли около трехсот лет тому назад доказали точным расчетом, что это не так и что желоб нужно выгибать по дуге циклоиды (опрокинутой вниз, рис. 9.). С тех пор циклоида и заслужила прозвище брахистохроны, а доказательства Бернулли послужили, началом новой отрасли математики - вариационного исчисления. Последнее занимается отысканием вида кривых, для которых та или иная интересующая нас величина достигает своего наименьшего (а в некоторых вопросах - наибольшего) значения.
Вообразим бесконечно длинную секундную стрелку, по которой, начиная от центра циферблата, неутомимо бежит маленький жучок с постоянной скоростью v см/с. Через минуту жучок будет на расстоянии 60v см от центра, через две - 120v и т.д. Вообще, через t секунд после начала пробега расстояние жучка от центра будет равно vt см. За это время стрелка повернется на угол, содержащий 6 t° (ведь за одну секунду она успевает повернуться на угол 360°:60 = 6°). Поэтому положение жучка на плоскости циферблата через любое число t секунд после начала движения находится так. Нужно отложить от начального положения стрелки в направлении ее вращения угол а, содержащий 6t°, и отмерить от центра вдоль нового положения стрелки расстояние r = vt см. Тут мы и настигнем жучка (рис. 10.).
Рис. 10.
Очевидно, что соотношение между углом поворота a стрелки (в градусах) и пройденным расстоянием r (в сантиметрах) будет такое:
r = (va)/6
Иными словами, r прямо пропорционально a, причем коэффициент пропорциональности k = v/6.
Приладим к нашему бегуну маленькую, но неистощимую баночку с черной краской и допустим, что краска, вытекая через крошечное отверстие, оставляет на бумаге след от уносимого вместе со стрелкой жучка. Тогда на бумаге будет постепенно вырисовываться кривая, впервые изученная Архимедом (287 - 212 до н.э.). В его честь она называется спиралью Архимеда. Нужно только сказать, что у Архимеда не было речи ни о секундной стрелке (тогда и часов с пружиной не было: их изобрели только в XVII в.), ни о жучке. Мы ввели их здесь для наглядности.
Рис. 11. Рис. 12.
Спираль Архимеда состоит из бесконечно многих витков. Она начинается в центре циферблата, и все более и более удаляется от него по мере того, как растет число оборотов. На рис. 42 изображены первый виток и часть второго.
Вы, наверное, слышали, что с помощью циркуля и линейки невозможно разделить на три равные части наудачу взятый угол (в частных случаях, когда угол содержит, например, 180°, 135° или 90°, эта задача легко решается). А вот если пользоваться аккуратно начерченной архимедовой спиралью, то любой угол можно разделить на какое угодно число равных частей.