После дифференцирования уравнения (12) имеем:
Приравнивая эти частные производные нулю и упрощая, получаем выражения,
Решая эту систему уравнений относительно S и q, находим
и, следовательно,
Что бы получить Qо, заменим, что
Поставляем (14) и (51) в (12), после упрощения получаем
При сравнении результатов, полученных для моделей I и II, можно заметить, что во первых уравнения (9), (10) и (11) можно получить из уравнения (13), (15), и (16), если в них устремиться С2к бесконечности. Этот результат нельзя считать неожиданным, так как модель I есть частный случай модели II.
Во – вторых, если С2 ¹µ, то
Следовательно, ожидаемые суммарные расходы в модели II меньше, чем в модели I.
Пример II: Пусть сохраняются все условия примера I, но только штраф С2за нехватку теперь равен 0,2 долл. за одно изделие в месяц. И уравнения (13) – (16) получаем:
При оптимальной стратегии ожидаемый дефицит к концу каждого периода составлял бы 4578 – 3058 = 1522 изделия.
6. Модель I. Модель Уилсона без ограничений
В качестве простейшей модели управления запасами рассмотрим модель оптимизации текущих товарных запасов, позволяющих повысить эффективность работы торгового предприятия. Такая модель строится в следующей ситуации: некоторое торговое предприятие в течении фиксированного периода времени собирается завести и реализовать товар конкретного (заранее известного) объема и при этом необходимо смоделировать работу предприятия так, чтобы суммарные издержки были минимальны. При построении этой модели используется следующие исходные предложения:
1. планируется запасы только одного товара или одной товарной группы;
2. уровень запасов снижается равномерно в результате равномерно производимой продажи;
3. спрос и планируемом периоде заранее полностью определен;
4. поступление товаров производится строго в соответствии с планом, отклонения не допускаются, штраф при неудовлетворенном спросе бесконечно велик;
5. издержки управления запасами складывается только из издержек по завозу и хранению запасов.
Суммарные издержки будем считать зависящими от величины одной поставки q. Таким образом, задача оптимального регулирования запасов сводится к нахождению оптимального размера q0 одной постановки. Найдя оптимальное значение управляемой переменной q, можно вычислить и другие параметры модели, а именно: количество поставок n0, оптимальный интервал времени tso между двумя последовательными поставками, минимальные (теоретические) суммарные издержки Q0.
Введем следующие обозначения для заранее известных параметров модели:
T - полный период времени, для которого строится модель;
R - весь объем (полный спрос) повара за время T;
C1 - стоимость хранения одной единицы товара в единицы времени;
Cs - расходы по завозу одной партии товара.
|
Полные издержки по хранению текущего запаса будет равны
|
Полные издержки по завозу товара будут равны
т.е. произведению стоимости завоза одной партии товара на количество поставок n, которые очевидно равны
Тогда суммарные издержки управления текущими запасами составят
|
Таким образом, для задачи оптимального управления текущими запасами построена следующая математическая модель:
при ограничениях 0 < q£Q (17)
|
|
|
|
|
|
|
|
|
оптимальные (теоретические) издержки составят:
|
|
По формулам (19), (21), (22) и (23) имеем:
Итак, оптимальный размер одной поставки равен 632 тонны, количество поставок nо равно 16, время tso между двумя последовательными поставками равно 23 дня, а минимальные суммарные расходы составят 31600 рублей.
Заметим, что условия рассмотренной задачи во многом являются идеализированными. На практике не всегда является возможным придерживаться полученных теоретических параметров модели управления запасами. Например, в рассмотренной задаче мы получили, что оптимальный размер одной поставки равен 632 тонны, но может так оказаться, что завод-изготовитель отпускает сахар только вагонами по 60 тонн. Значит, торговое предприятие вынуждено отклоняться от оптимального размера одной поставки. Поэтому важно определить такие пределы отклонения, которые не приводят к существенному возрастанию суммарных издержек.
|
В области минимума она изменяется медленно, но с удалением от точки qo, особенно в сторону малых q, величина Q быстро возрастает. Определим доступные изменения размера одной поставки по доступному уровню возрастания издержек. Пусть торговое предприятие “согласно” на возрастание минимальных издержек в не более, чем b раз (b > 1), т.е. предприятие допускает издержки
Q = bQo (24)
Отклонение размера одной поставки q от оптимального зададим с помощью дополнительного параметра a в виде:
q = aqo.
|
|
|
Пусть в примере 1 предприятие допускает увеличение суммарных издержек на 20% по сравнению с оптимальными, т.е. b = 1,2. Тогда по формулам (27) получаем: a1= 1,2 - Ö1,44 - 1 = 0,54; a2= 1,2 + Ö1,44 - 1 = 1,86. И интервал допустимых величин a есть 0,54 £a£ 1,86. Тогда: a1qo= 0,54 * 632 » 341; a2qo = 1,86 * 632 » 1176 и объём одной постановки q может изменяться в интервале (a1qo; a2q0) = (341; 1176). При этом суммарные издержки не превысят оптимальные более чем в 1, 2 раза.