Чувашский государственный университет им. И.Н. Ульянова
Кафедра высшей математики
КУРСОВАЯ РАБОТА
на тему:
«Кривые третьего и четвертого порядка»
Выполнили: студенты
группы С-12-00
Пинаев И.Н.
Искаков Р.Р.
Проверила:
доцент кафедры высшей математики
к.ф.-м.наук Самарина С.М.
Чебоксары, 2002
Декартов лист
1. Особенности формы.Декартовым листом называется кривая 3-го порядка, уравнение которой в прямоугольной системе имеет вид
(1)Иногда удобно пользоваться параметрическими уравнениями декартова листа, которые можно получить, полагая y=tx, присоединяя к этому равенству равенство (1) и решая полученную систему относительно х и у, в результате будем иметь:
(2) |
откуда следует, что декартов лист является рациональной кривой.
Заметим еще, что полярное уравнение декартова листа имеет вид
(3)Координаты х и у входят в уравнение декартова листа симметрично, откуда следует, что кривая симметрична относительно биссектрисы у=х. Обычное исследование на особые точки приводит к заключению, что начало координат является узловой точкой декартова листа. Уравнения касательных к алгебраической кривой в ее особой точке, совпадающей с началом координат, можно получить, как известно, приравнивая нулю группу членов низшей степени из уравнения этой кривой. В нашем случае имеем З аху = 0, откуда получим х = 0 и у = 0 – искомые уравнения касательных в узловой точке. Эти касательные совпадают с координатными осями и, следовательно, в начале координат кривая пересекает сама себя под прямым углом. Легко видеть, что в первом координатном угле кривая делает петлю, которая пересекается с прямой у = х в точке
Точки этой петли, в которых касательные параллельны координатным осям, имеют координаты
и (cм. рис. 1)Для окончательного заключения о форме кривой следует еще найти асимптоту
Заменяя в уравнении кривой у на приравняем нулю в полученном уравнении коэффициенты двух членов с высшими степенями х. Получим и b = - а. Таким образом, декартов лист имеет асимптотуу = — х — а; следовательно, во 2-м и 4-м координатных углах ветви декартова листа уходят в бесконечность.
Рис. 1
2. Свойства. Согласно теореме Маклорена, если в трех точках алгебраической кривой 3-го порядка, лежащих на одной прямой, провести касательные к этой кривой, то точки их пересечения с кривой будут лежать также на прямой линии. Применительно к декартову листу эта теорема доказывается просто. Выведем с этой целью предварительно условие пребывания трех точек декартова листа, соответствующих значениям t1 , t2 и t3 параметра, на одной прямой. Если уравнение прямой имеет вид y=kx+b, то значения параметра, соответствующие точкам пересечения этой прямой с кривой, должны удовлетворять системе
Система эта приводит к уравнению
корни которого и будут искомыми значениями t1 , t2 и t3 параметра, откуда следует, что
(4)Это равенство и является условием пребывания трех точек M1(t1 ), M2(t2), М3 (t3) декартова листа на одной прямой.
Располагая этим условием, покажем справедливость теоремы Маклорена для декартово листа. Действительно, касательную в точке M1 (t1) можно рассматривать как прямую, которая пересекает декартов лист в двух совпадающих между собой точках, для которых t2=t1, и в третьей точке, для которой соответствующее значение параметра обозначим через T1. Условие (4) примет вид t12T1= -1. Для касательных в точках М2 и M3 получим аналогичные соотношения t22T2 = -1 и t32T3 = -1. Перемножая эти три равенства, будем иметь
(t1t2t3)2T1T2T3 = -1. откуда на основании (4) заключаем, что и T1T2T3 = -1, т. е. точки N1(T1),N2(T2) и N3(T3) лежат на одной прямой.
Определяя площадь, ограниченную петлей декартова листа, получим:
3. Способ построения. Заметим предварительно, что если ось симметрии декартова листа принять за ось абсцисс, то уравнение его примет вид
(5)Пусть теперь имеется окружность с радиусом r и центром в точке
и прямая х= -h. Возьмем произвольную точку Q этой окружности и проведем прямую QA и прямую QN, перпендикулярную к оси абсцисс (рис. 2). Из точки пересечения R прямой QAс прямой х= -h проводим прямую RO до пересечения ее в точке Q1 с прямой QN. Таким образом, точке Q на окружности будет поставлена в соответствие точка Q1. Геометрическое место точек Q1 представляет собой декартов лист.
Рис 2.
Для доказательства заметим, что координаты точки Q можно записать в виде
угол, составляемый радиусом круга, проведенным в точку Q, с положительным направлением оси абсцисс. В соответствии с этим уравнение прямой QA может быть записано в виде
Полагая в этом уравнении х= -h, находим ординату
точки R. Отсюда следует, что уравнение прямой RQ1 запишется в виде
(6)В то же время уравнение прямой Q1N имеет вид
(7)Исключая из уравнений (6) и (7) параметр w, находим уравнение геометрического места точек Q1 в виде
Сопоставляя его с уравнением (5), заключаем, что найденное геометрическое место точек является декартовым листом.
Преобразование точек окружности в точки декартова листа, осуществляемое при таком его построении, называется преобразованием Маклорена.
4. Историческая справка. Впервые в истории математики кривая, названная впоследствии декартовым листом, определяется в письме Декарта к Ферма в 1638 г. как кривая, для которой сумма объемов кубов, построенных на абсциссе и ординате каждой точки, равняется объему параллелепипеда, построенного на абсциссе, ординате и некоторой константе. Форма кривой устанавливается впервые Робервалем, который находит узловую точку кривой, однако в его представлении кривая состоит лишь из петли. Повторяя эту петлю в четырех квадрантах, он получает фигуру, напоминающую ему цветок с четырьмя лепестками. Поэтическое название кривой «лепесток жасмина», однако, не привилось. Полная форма кривой с наличием асимптоты была определена позднее (1692) Гюйгенсом и И. Бернулли. Название «декартов лист» прочно установилось только с начала 18 века.
1. Особенности формы. Среди многих способов образования циссоиды—кривой, открытой древними в поисках решения знаменитой задачи об удвоении куба, мы остановимся сначала на простейшем. Возьмем окружность (называемую производящей) с диаметром ОА=2а и касательную АВ к ней. Через точку О проведем луч ОВ и на нем отложим отрезок ОМ=ВС. Построенная таким образом точка М принадлежит циссоиде. Повернув луч 0В на некоторый угол и проделав указанное построение, мы найдем вторую точку циссоиды, и т. д. (Рис. 3).
Если точку О принять за полюс, то
но откуда получаем полярное уравнение циссоиды