Смекни!
smekni.com

Курсовая Работа - Аппроксимация функций (стр. 4 из 4)

KdetLin:=0.0;

KdetKvadr:=0.0;

KdetExp:=0.0;

for i:=1 to n do

begin

S1:=S1+(ArrayXY[1,i]-Xsr)*(ArrayXY[2,i]-Ysr);

S2:=S2+sqr(ArrayXY[1,i]-Xsr);

S3:=S3+sqr(ArrayXY[2,i]-Ysr);

Slin:=Slin+sqr(a1lin+a2lin*ArrayXY[1,i]-ArrayXY[2,i]);

Skvadr:=Skvadr+sqr(a1kvadr+a2kvadr*ArrayXY[1,i]+a3kvadr*ArrayXY[1,i]*ArrayXY[1,i]-ArrayXY[2,i]);

Sexp:=Sexp+sqr(a1exp*exp(a2exp*ArrayXY[1,i])-ArrayXY[2,i]);

end;

{ Вычисление коэффициентов корреляции и детерминированности }

Kkor:=S1/sqrt(S2*S3);

KdetLin:=1-Slin/S3;

KdetKvadr:=1-Skvadr/S3;

KdetExp:=1-Sexp/S3;

{ Вывод результатов }

WriteLn('Линейная функция');

WriteLn('a1=',a1lin:8:5);

WriteLn('a2=',a2lin:8:5);

WriteLn('Квадратичная функция');

WriteLn('a1=',a1kvadr:8:5);

WriteLn('a2=',a2kvadr:8:5);

WriteLn('a3=',a3kvadr:8:5);

WriteLn('Экспоненциальная функция');

WriteLn('a1=',a1exp:8:5);

WriteLn('a2=',a2exp:8:5);

WriteLn('c=',cexp:8:5);

WriteLn('Xcp=',Xsr:8:5);

WriteLn('Ycp=',Ysr:8:5);

WriteLn('Коэффициент корреляции ',Kkor:8:5);

WriteLn('Коэффициент детерминированности (линейная аппроксимация) ',KdetLin:2:5);

WriteLn('Коэффициент детерминированности (квадратическая аппроксимация) ',KdetKvadr:2:5);

WriteLn('Коэффициент детерминированности (экспоненциальная аппроксимация) ',KdetExp:2:5);

end.


5.2. Результаты расчета Pascal.

Коэффициенты линейной функции

a1=-24.73516

a2=11.63471

Коэффициенты квадратичной функции

a1= 1.59678

a2=-0.62145

a3= 0.95543

Коэффициенты экспоненциальной функции

a1= 1.65885

a2= 0.40987

c= 0.50613

Xcp= 6.52320

Ycp=51.16040

Коэффициент корреляции 0.96196

Коэффициент детерминированности (линейная аппроксимация) 0.92537

Коэффициент детерминированности (квадратическая аппроксимация) 0.99409

Коэффициент детерминированности (экспоненциальная аппроксимация) 0.02691

Заключение.

Сделаем заключение по результатам полученных данных:

1. Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные т.к. согласно таблице 8 коэффициент корреляции - 0,9620; Коэффициенты детерминированности линейной аппроксимации - 0,9253; квадратической аппроксимации – 0,994; экспоненциальной аппроксимация – 0,0269.

2. Сравнивая результаты, полученные при помощи функции ЛИНЕЙН видим что они полностью совпадают с вычислениями, проведенными выше. Это указывает на то, что вычисления верны.

3. Полученное при построении линии тренда значение коэффициента детерминированности для экспоненциальной зависимости не совпадает с истинным значением поскольку при вычислении коэффициента детерминированности используются не истинные значения y, а преобразованные значения ln(y) с дальнейшей линеаризацией.

4. Результаты полученные с помощью программы на языке PASCAL полностью совпадают со значениями приведенными выше. Это говорит о верности вычислений.

Список литературы.

1. Ахметов К.С. Windows 95 для всех. - М.:ТОО "КомпьютерПресс", 1995.

2. Вычислительная техника и программирование. Под ред. А.В. Петрова. М.: Высшая школа, 1991.

3. Гончаров A., Excel 97 в примерах. — СПб: Питер, 1997.

4. Левин А., Самоучитель работы на компьютере. - М.: Международное агентство А.Д.Т., 1996.

5. Информатика: Методические указания к курсовой работе. Санкт-Петербургский горный институт. Сост. Д.Е. Гусев, Г.Н. Журов. СПб, 1999