KdetLin:=0.0;
KdetKvadr:=0.0;
KdetExp:=0.0;
for i:=1 to n do
begin
S1:=S1+(ArrayXY[1,i]-Xsr)*(ArrayXY[2,i]-Ysr);
S2:=S2+sqr(ArrayXY[1,i]-Xsr);
S3:=S3+sqr(ArrayXY[2,i]-Ysr);
Slin:=Slin+sqr(a1lin+a2lin*ArrayXY[1,i]-ArrayXY[2,i]);
Skvadr:=Skvadr+sqr(a1kvadr+a2kvadr*ArrayXY[1,i]+a3kvadr*ArrayXY[1,i]*ArrayXY[1,i]-ArrayXY[2,i]);
Sexp:=Sexp+sqr(a1exp*exp(a2exp*ArrayXY[1,i])-ArrayXY[2,i]);
end;
{ Вычисление коэффициентов корреляции и детерминированности }
Kkor:=S1/sqrt(S2*S3);
KdetLin:=1-Slin/S3;
KdetKvadr:=1-Skvadr/S3;
KdetExp:=1-Sexp/S3;
{ Вывод результатов }
WriteLn('Линейная функция');
WriteLn('a1=',a1lin:8:5);
WriteLn('a2=',a2lin:8:5);
WriteLn('Квадратичная функция');
WriteLn('a1=',a1kvadr:8:5);
WriteLn('a2=',a2kvadr:8:5);
WriteLn('a3=',a3kvadr:8:5);
WriteLn('Экспоненциальная функция');
WriteLn('a1=',a1exp:8:5);
WriteLn('a2=',a2exp:8:5);
WriteLn('c=',cexp:8:5);
WriteLn('Xcp=',Xsr:8:5);
WriteLn('Ycp=',Ysr:8:5);
WriteLn('Коэффициент корреляции ',Kkor:8:5);
WriteLn('Коэффициент детерминированности (линейная аппроксимация) ',KdetLin:2:5);
WriteLn('Коэффициент детерминированности (квадратическая аппроксимация) ',KdetKvadr:2:5);
WriteLn('Коэффициент детерминированности (экспоненциальная аппроксимация) ',KdetExp:2:5);
end.
Коэффициенты линейной функции
a1=-24.73516
a2=11.63471
Коэффициенты квадратичной функции
a1= 1.59678
a2=-0.62145
a3= 0.95543
Коэффициенты экспоненциальной функции
a1= 1.65885
a2= 0.40987
c= 0.50613
Xcp= 6.52320
Ycp=51.16040
Коэффициент корреляции 0.96196
Коэффициент детерминированности (линейная аппроксимация) 0.92537
Коэффициент детерминированности (квадратическая аппроксимация) 0.99409
Коэффициент детерминированности (экспоненциальная аппроксимация) 0.02691
Сделаем заключение по результатам полученных данных:
1. Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные т.к. согласно таблице 8 коэффициент корреляции - 0,9620; Коэффициенты детерминированности линейной аппроксимации - 0,9253; квадратической аппроксимации – 0,994; экспоненциальной аппроксимация – 0,0269.
2. Сравнивая результаты, полученные при помощи функции ЛИНЕЙН видим что они полностью совпадают с вычислениями, проведенными выше. Это указывает на то, что вычисления верны.
3. Полученное при построении линии тренда значение коэффициента детерминированности для экспоненциальной зависимости не совпадает с истинным значением поскольку при вычислении коэффициента детерминированности используются не истинные значения y, а преобразованные значения ln(y) с дальнейшей линеаризацией.
4. Результаты полученные с помощью программы на языке PASCAL полностью совпадают со значениями приведенными выше. Это говорит о верности вычислений.
1. Ахметов К.С. Windows 95 для всех. - М.:ТОО "КомпьютерПресс", 1995.
2. Вычислительная техника и программирование. Под ред. А.В. Петрова. М.: Высшая школа, 1991.
3. Гончаров A., Excel 97 в примерах. — СПб: Питер, 1997.
4. Левин А., Самоучитель работы на компьютере. - М.: Международное агентство А.Д.Т., 1996.
5. Информатика: Методические указания к курсовой работе. Санкт-Петербургский горный институт. Сост. Д.Е. Гусев, Г.Н. Журов. СПб, 1999