Смекни!
smekni.com

Множина комплексних чисел (стр. 3 из 7)

(a + bi)( c + di) = (ac - bd) + (ad + bc)i . (12)

Эта формула соответствует формуле (2), которой определялось умножение упорядоченных пар дей­ствительных чисел.

Отметим, что сумма и произведение двух комп­лексно сопряженных чисел являются действительными числами. В самом деле, если α = a + bi,

= a – bi, то α

= (a + bi)( a - bi) = a2i2b2 = a2 + b2 , α +
= ( a + bi) + (a - bi) = (a + a) + (b - b)i = 2a, т.е.

α +

= 2a, α
= a2 + b2. (13)

При делении двух комплексных чисел в алгеб­раической форме следует ожидать, что частное вы­ражается также числом того же вида, т. е. α/β = u + vi, где u, v

R. Выведем правило деления комплексных чисел. Пусть даны числа α = a + bi, β = c + di, причем β ≠ 0, т. е. c2 + d2 ≠ 0. Послед­нее неравенство означает, что c и d одновременно в нуль не обращаются (исключается случай, когда с = 0, d = 0). Применяя формулу (12) и вто­рое из равенств (13), находим:

.

Следовательно, частное двух комплексных чисел определяется формулой:

, (14)

соответствующей формуле (4).

С помощью полученной формулы для числа β = с + di можно найти обратное ему число β-1 = 1/β. Полагая в формуле (14) а = 1, b = 0, получаем

.

Эта формула определяет число, обратное данному комплексному числу, отличному от нуля; это число также является комплексным.

Например: (3 + 7i) + (4 + 2i) = 7 + 9i;

(6 + 5i) – (3 + 8i) = 3 – 3i;

(5 – 4i)(8 – 9i) = 4 – 77i;

.

Свойства действий

над комплексными числами

Для любых комплексных чисел α = a + bi, β = с + di, γ = e + fi выполняются следую­щие свойства действий сложения и умножения:

1) α + β = β + α – переместительное (коммутатив­ное) свойство сложения;

2) (α + β) + γ = α + (β + γ) – сочетательное (ассоциативное) свойство сложения;

3) αβ = βα – переместительное (комму­тативное) свойство умножения;

4) (αβ)γ = α(βγ) – сочетательное (ассоциативное) свойство умножения;

5) (α + β)γ = αγ + βγ – распределительное (дистри­бутивное) свойство умножения относительно сло­жения.

Докажем, например, первое и третье из этих свойств. По определению сложения получаем

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

β + α = (c + di) + (a + bi) = (c + a) + (d + b)i = (a + c) + (b + d)i = α + β,

так как с + a = a + с, d + b = b + d, т. е. для любых действительных чисел выполняется переместительное (коммутативное) свойство сложения. Далее,

αβ = (a + bi)(c + di) = aс + adi + bci + bdi2 = (ac - bd) + (ad + bc)i,

βα = (c + di) (a + bi) = сa + cbi + dai + dbi2 = (ca - db) + (cb + da)i = (ac - bd) + (ad + bc)i = αβ,

поскольку для любых действительных чисел ac = ca, bd = db, т. е. выполняется перемести­тельное (коммутативное) свойство умножения.

Остальные свойства доказываются аналогично, с учетом соответствующих свойств операций над дей­ствительными числами.

Таким образом, операции над комплексными числами подчиняются тем же законам, что и опера­ции над действительными числами.

Возведение в степень комплексного числа.

Извлечение корня из комплексного числа

При возведении в степень комплексного числа пользуются формулой бинома Ньютона:

.

С помощью формулы бинома Ньютона получаем

.

В правой части этого равенства заменяют сте­пени мнимой единицы i их значениями и приводят подобные члены. Рассмотрим, как выражаются эти степени. Учитывая формулу i2 = - 1 , получаем i3 = i2 i = -1 ∙ i = - i, i4 = i3i = -ii = -i2 = 1, i5 = i4 ∙ i = i, i6 = i5 ∙ i = i2 = -1, i7 = i6i = -i, i8 = i7i = - i2 = 1 и т. д. В общем виде полученный результат можно записать так:

i4k = 1, i4k+1 = i, i4k+2 = -1, i4k+3 = - i (k = 0, 1, 2, …).

Например: (3 + 4i)2 = 32 + 2 ∙ 3 ∙ 4i + (4i)2 = 9 + 24i + 16i2 = 9 + 24i – 16 = -7 + 24i;

(1 + i)3 = 1 + 3i + 3i2 + i3 = 1 + 3i – 3 – i = - 2 + 2i.

Переходим к извлечению квадратного корни из комплексного числа a + bi. Квадратным корнем из комплексного числа называют такое комплексное число, квадрат которого равен данному комплексно­му числу. Обозначим это комплексное число через u + vi, т. е.

.

Последнее равенство перепишем в следующем виде:

u2 + 2uvi + v2i2 = a + bi, u2 – v2 + 2uvi = a + bi.

Учитывая определение равенства комплексных чисел (см. (10)), получаем

u2 – v2 = a, 2uv = b. (15)

Возведем в квадрат обе части каждого из этих равенств, сложим их, преобразуем полученную левую часть и извлечем квадратный корень:

(u2 – v2)2 + 4u2v2 = a2 + b2, (u2 + v2)2 = a2 + b2, u2 + v2 =

.

Это уравнение и первое из уравнений (15) дают возможность определить u2 и v2 :

. (16)

Из первого уравнения находим два значения u, отличающиеся друг от друга только знаком, второе уравнение дает два значения v. Все эти значения будут действительными, поскольку при любых a и b

.

Знаки u и v следует выбирать так, чтобы выполнялось второе из равенств (15). Это дает две возможные комбинации значений u и v, т. е. два числа u1 + v1i, u2 + v2i, отличающиеся знаком.

Следовательно, извлечение квадратного корня из комплексного числа всегда возможно и дает два значения, отличающиеся друг от друга только знаком.

Например: пусть требуется извлечь квадратный корень из комплексного числа 3 — 4i, т. е. найти комплексное число u + vi такое, что (u + vi)2 = 3 – 4i. В данном случае a = 3, b = -4, поэтому уравнения (16) принимают вид

,
.

Второе из равенств (15) запишется так: 2uv = - 4, uv =-2; это означает, что соответствующие зна­чения u и v имеют разные знаки. Так как u2 = 4, v2 = 1, то с учетом равенства uv = -2 находим, что u1 = 2, v1 = -1, u2 = -2, v2 = 1, т.е. 2 – i и -2 + i – значения квадратного корня из комп­лексного числа 3 – 4i.

Геометрическое изображение комплексного числа

Всякое комплексное число α = a + bi мы можем изображать как точку на плоскости с координатами a и b (рис. 1). Число α называют аффиксом этой точки. Плоскость, точки которой изображают комплексные числа, называют комплексной числовой плоскостью. Начало координат, которому соответствует число 0, называют нулевой точкой. При таком изображении комплексных чисел действительные числа изображаются точками оси абсцисс, точки же оси ординат представляют чисто мнимые числа. Поэтому ось абсцисс называют действительной осью, ось ординат – мнимой осью. Сопряженные комплексные числа α и
изображаются точками, симметричными относительно действительной оси, противоположные комплексные числа α и –α симметричны относительно нулевой точки.

Комплексные числа и соответствующие им точки комплексной плоскости обозначают буквой z и пишут z = x + iy, где x – действительная часть (x = Rez), y – мнимая часть (y = Imz).