Отметим, что модуль комплексного числа является неотрицательным действительным числом. Аргументом комплексного числа z = x + iy называют величину угла φ наклона радиус-вектора
к положительной полуоси Ox. Аргумент комплексного числа z обозначают так: Argz. При изменении z этот угол может принимать любые действительные значения (как положительные, так и отрицательные; последние отсчитываются по часовой стрелке). Если модули двух комплексных чисел равны, а значения угла φ отличаются друг от друга на 2π, или на число, кратное 2π, то точки, соответствующие этим комплексным числам, совпадают; комплексные числа в этом случае равны между собой. Следовательно, аргумент комплексного числа z имеет бесконечное множество значений, отличающихся друг от друга на число, кратное 2π. Аргумент не определен лишь для числа 0, модуль которого равен нулю: |0| =0. Среди значений аргумента комплексного числа z 0 существует одно и только одно значение, заключенное между —π, +π, включая последнее значение. Его называют главным значением аргумента и обозначают argz. Итак, модуль и аргумент комплексного числа z удовлетворяют следующим соотношениям:|z|
0, -π < argz π, Argz = argz + 2πn (n = 0, 1, 2, …).Главное значение аргумента положительного действительного числа равно 0, главное значение аргумента действительного отрицательного числа равно π, главное значение аргумента мнимого числа bi (b > 0) равно π/2, главное значение аргумента мнимого числа –bi (b > 0) равно –π/2.
Выразим действительную и мнимую части комплексного числа z = x + iy через его модуль и аргумент. Пусть точка z изображает число z = x + iy (рис. 2). Из прямоугольного треугольника ОAz получаем
x = r cosφ, y = r sinφ, (19)
где r = |z|. Отсюда и из формул (17), (18) следует:
cosφ =
, sinφ = , tgφ = .Например: 1) найдём аргумент числа z = 1 – i. Так как Re z = 1, Im z = -1, то точка z = 1 – i лежит в IV четверти. Поэтому достаточно найти такое решение одного из последних уравнений , которое является углом в IV четверти. Рассмотрим уравнение cosφ =
. Находимcos φ =
, φ = + 2kπ (k = 0, 1, 2, …); 2) найдём аргумент числа -1- i. Точка -1-i лежит в III четверти. Найдём такое решение уравнения tg φ =
, которое является углом в III четверти. Находимtg φ = 1, φ =
+ 2kπ (k = 0, 1, 2, …).Тригонометрическая форма комплексного числа
Рассмотрим комплексное число
z = x + iy. (20)
Подставляя сюда выражения для x и y через модуль и аргумент комплексного числа (см. формулы (19)), получаем z = r cosφ + ir sinφ, или
z = r (cosφ + isinφ) (r
0). (21)Запись комплексного числа z в виде (21) называют тригонометрической формой этого числа.
Замечание. Не всякая запись комплексного числа через тригонометрические функции является тригонометрической формой этого числа. Например, запись числа ί в виде
i = cos
+ isin , или i = (-1)(cos + isin ) не является тригонометрической формой числа i: в первом случае у косинуса и синуса разные аргументы, во втором - имеется отрицательный множитель. Поскольку аргументами комплексного числа i являются числа π/2 + 2kπ (k = 0, ±1, ±2, ...) и только они, и |i| = 1, то тригонометрическая форма числа i имеет вид
i = cos (
+ 2kπ) + isin ( + 2kπ) (k – любое целое число).Очевидно, что
r (cosφ + isinφ) = r (cos(φ +2kπ) + isin(φ +2kπ)).
Два комплексных числа, заданных в тригонометрической форме, равны тогда и только тогда, когда их модули равны, а аргументы отличаются на величину, кратную 2π. Следовательно, если
r1 (cosφ1 + isinφ1) = r2 (cosφ2 + isinφ2), (22)
то
r1 = r2, φ2 = φ1 + 2kπ (k = 0, ±1, ±2, ...). (23)
Если комплексное число z = x + iy задано в тригонометрической форме (21), то комплексное число
= x – iy записывается в форме = r (cos(-φ) + isin(-φ)),поэтому
|z| = |
|, argz = -arg ,