Смекни!
smekni.com

Множина комплексних чисел (стр. 7 из 7)

Теория функций комплексной переменной находит широкое применение при решении важных практи­ческих задач картографии, электротехники, тепло­проводности и др. Во многих вопросах, где речь идет, например, об электрическом потенциале в точ­ках пространства, окружающего заряженный кон­денсатор, или о температуре внутри нагретого тела, о скоростях частиц жидкости или газа в потоке, дви­жущемся в некотором канале и обтекающем при этом некоторые препятствия, и т. п., нужно уметь находить потенциал, температуру, скорости и т. п. Задачи такого рода могут быть решены без особых затруд­нений в случае, когда встречающиеся в них тела имеют простую форму (например, в виде плоских пластин или круговых цилиндров). Однако расчеты необходимо уметь производить и во многих других случаях. Например, чтобы сконструировать самолет, надо уметь вычислять скорости частиц в потоке, обтекающем крыло самолета. Разумеется, при полете самолета движутся и частицы воздуха, и само крыло. Однако, опираясь на законы механики, исследование можно свести к случаю, когда крыло неподвижно, а на него набегает и обтекает его поток воздуха. Крыло самолета в поперечном

разрезе, (профиль крыла) имеет вид,
показанный на рисунке 7. Расчет ско­ростей производится достаточно просто, когда по­перечный разрез обтекаемого тела есть круг (т. е. само тело является круглым цилиндром). Чтобы свести задачу о скоростях частиц потока
воздуха, обтекающего крыло самолета, к более простой задаче обтекания круглого цилиндра,
достаточно конформно отобразить часть плоскости, заштрихованную на ри­сунке 7, а (вне крыла), на другую фигуру, заштрихо­ванную на рисунке 7, б (вне круга). Такое ото­бражение осуществляется с помощью некоторой фун­кции комплексной пере­менной.
Знание этой фун­кции позволяет перейти от скоростей в потоке, обте­кающем круглый
цилиндр, к скоростям в потоке, об­текающем крыло самоле­та, и тем самым полностью решить поставленную задачу.

Конформное отображение, заданное соответствующей функцией комплексной переменной, аналогичным образом позволяет сводить решение задач о расчете электрического потенциала и температур от случая тел произвольной формы (любого профиля сечения) к простейшим случаям, для которых задачи решается легко.

Русский и советский ученый H. E. Жуковский (1847–1921) успешно применял теорию функций комплексной переменной к решению важных при­кладных задач. Так, методами этой теории он доказал основную теорему о подъемной силе крыла самолета. В. И. Ленин назвал H. E. Жуковского «отцом русской авиации». В одном из своих высту­плений H. E. Жуковский говорил: «...человек не имеет крыльев и по отношению веса своего тела к весу мускулов он в 72 раза слабее птицы; ...он почти и 800 раз тяжелее воздуха, тогда как птица тяжелее воздуха в 200 раз. Но, я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума». (Жуковский H.E. Собрание сочи­нений. – М. – Л.: Гостехиздат, 1950. –T. 7. – С. 16.) С помощью теории функций комплексной перемен­ной H.E. Жуковский решал задачи, относящиеся к вопросам просачивания воды через плотины.