Смекни!
smekni.com

Практикум по предмету Математические методы и модели (стр. 2 из 7)

Множественный регрессионный анализ – это статистический метод исследования зависимости случайной величины y от переменных xj, рассматриваемых как неслучайные величины независимо от истинного закона распределения xj. Предполагается, что y имеет нормальный закон распределения с условным мат. ожиданием y=j(x1,x2,…,xk), являющимся функцией от аргументов xj, и с постоянной, не зависящей от аргументов дисперсией s2. Наиболее часто встречаются линейные уравнения регрессии вида y=b0+b1x1+b2x2+…+bjxj+…+bkxk, линейные относительно неизвестных параметров bj (j=0,1,…,k) и аргументов xj.

Коэффициент регрессии bjпоказывает, на какую величину в среднем изменится результативный признак y, если переменную xj увеличить на единицу ее измерения, т.е. является нормативным коэффициентом.

В матричной форме регрессионная модель имеет вид

Y=Xb+e,

где Y – случайный вектор-столбец размерности [n´1] наблюдаемых значений результативного признака (y1,y2,…,yn); X – матрица размерности [n´ (k+1)] наблюдаемых значений аргументов. Элемент матрицы xijрассматривается как неслучайная величина (i=1,2,…,n; j=0,1,2,…,k; xоi=1);b– вектор-столбец размерности [(k+1)´1] неизвестных коэффициентов регрессии модели; e – случайный вектор-столбец размерности [n´1] ошибок наблюдений (остатков). Компоненты вектора независимы между собой, имеют нормальный закон распределения с нулевым мат. ожиданием и неизвестной дисперсией. На практике рекомендуется, чтобы n превышало k как минимум в три раза.

Находится оценка уравнения регрессии вида

y*=b0+b1x1+b2x2+…+bjxj+…+bkxk.

Cогласно методу наименьших квадратов вектор оценок коэффициентов регрессии определяется по формуле

b=(XTX)-1XTY,

где

1 x11 x1k y1 b0
. . . . .
. . . . .
X= 1 xi1 xik Y= yi b= bj
. . . . .
. . . . .
1 xn1 xnk yn bk

XT – транспонированная матрица X;(XTX)–1– матрица, обратная к матрице XTX.

Оценка ковариационной матрицы коэффициентов регрессии вектора b определяется из выражения

S*(b)=S*2(XTX)1,

где S*2=(Y-Xb)T(Y-Xb)/(n-k-1).

Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем

S*2b(j–1)= S*2[(XTX)1]jjдля j=1,2,…,k, k+1.

Значимость уравнения регрессии, т.е. гипотеза H0: b=0 (b0=b1=…=bk=0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле

Fнабл=(QR/(k+1))/(Qост/(n-k-1)),

где QR=(Xb)T(Xb), Qост=(Y-Xb)T(Y-Xb).

По таблице F-распределения (Приложение 1) для заданных a, n1=k+1, n2=n-k-1 находят Fкр.

Гипотеза H0 отклоняется с вероятностью a, если Fнабл>Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.

Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотез H0: bj=0, где j=1,2,…,k, используют t-критерий и вычисляют tнабл(bj)=bj/S*bj.По таблице t-распределения (Приложение 1) для заданных a, n=n-k-1 находят tкр.

Гипотеза H0 отвергается с вероятностью ошибки a, если êtнабл ê>tкр. Из этого следует, что соответствующий коэффициент регрессии bj значим, т.е. bj ¹ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. После этого реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначимых переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Для решения задачи требуется:

1. Найти оценку уравнения регрессии вида y=b0+b1x1+b2x2.

2. Проверить значимость уравнения регрессии при a=0,05 или a=0,01.

3. Проверить значимость коэффициентов регрессии.

4. Дать экономическую интерпретацию коэффициентам регрессии и оценить адекватность полученной модели по величине абсолютных ei и относительных diотклонений.

5. При необходимости перейти к алгоритму пошагового регрессионного анализа, отбросив один из незначительных коэффициентов регрессии.

6. Построить матрицы парных и частных коэффициентов корреляции.

7. Найти множественные коэффициенты корреляции и детерминации.

8. Проверить значимость частных и множественных коэффициентов корреляции.

9. Провести содержательный экономический анализ полученных результатов.

Пример решения задачи 1

По данным годовых отчетов десяти (n=10) предприятий (табл.4) провести анализ зависимости себестоимости товарной продукции y (млн. р.) от объема валовой продукции x1(млн. р.) и производительности труда x2 (тыс. р. на чел.).

Таблица 4

Исходная информация для анализа и результаты расчета
Исходная информация Результаты расчета
xi1 xi2 yi y*i (y*i)2 ei=yi-y*i (ei)2 di= ei/ y*i
1 3 1,8 2,1 2,31572 5,36255 -0,21572 0,04653 -0,09315
2 4 1,5 2,8 3,48755 12,16300 -0,68755 0,47273 -0,19714
3 5 1,4 3,2 4,35777 18,99015 -1,15777 1,34043 -0,26568
4 5 1,3 4,5 4,50907 20,33171 -0,00907 0,00008 -0,00201
5 5 1,3 4,8 4,50907 20,33171 0,29093 0,08464 0,064521
6 5 1,5 4,9 4,20647 17,69439 0,69353 0,48098 0,164872
7 6 1,6 5,5 4,77408 22,79184 0,72592 0,52696 0,152054

Окончание табл. 4

Исходная информация Результаты расчета
xi1 xi2 yi y*i (y*i)2 ei=yi-y*i (ei)2 di= ei/ y*i
8 7 1,2 6,5 6,09821 37,18816 0,40179 0,16144 0,065887
9 15 1,3 12,1 11,6982 136,84905 0,40175 0,16140 0,034343
10 20 1,2 15,0 15,4441 238,52177 -0,44415 0,19727 -0,02876
Сред. знач. S= 530,22437 S= 3,47247
7,5 1,41 6,14
y*i – значения, вычисленные по уравнению регрессии
ei – абсолютные ошибки аппроксимации
di – относительные ошибки аппроксимации
Решение

1. Определение вектора b оценок коэффициентов

уравнения регрессии

Расчет оценок коэффициентов уравнения регрессии y*=b0+b1x1+b2x2 производится по уравнению b=(XTX)–1XTY:

n Sxi1 Sxi2 10 75 14,1
XTX = Sxi1 Sx2i1 Sxi1xi2 = 75 835 100,4
Sxi2 Sxi1xi2 Sx2i2 14,1 100,4 20,21
Syi 61,4 b0 2,88142
XTY = Sxi1yi = 664,5 b = b1 = 0,71892
Sxi2yi 82,23 b2 -1,51303

Таким образом, оценка уравнения регрессии примет вид

y*=2,88142+0,71892x1-1,51303x2.

2. Проверка значимости уравнения y*=2,88142+0,71892x1-1,51303x2.

а) QR=(Xb)T(Xb)=Sy*i =530,224365;

б) Qост=(Y-Xb)T(Y-Xb)=Se2i=3,472465;

в) несмещенная оценка остаточной дисперсии:

S*2= Qост/(n-3)=3,472465 / 7 = 0,496066;

г) оценка среднеквадратичного отклонения:

S*= 0,7043195;

д) проверяем на уровне a=0,05 значимость уравнения регрессии, т.е. гипотезу H0: b=0 (b0=b1=b2=0). Для этого вычисляем

Fнабл=(QR/(k+1))/(Qост/(n-k-1))=(530,224365 / 3))/(3,472465 / 7))=356,32776.

Далее по таблице F-распределения для a=0,05, n1=k+1=3, n2=n-k-1=7 находим Fкр=4,35. Так как Fнабл>Fкр (356,32776>4,35), то гипотеза H0 отвергается с вероятностью ошибки 0,05. Т.о. уравнение является значимым.

3. Проверка значимости отдельных коэффициентов регрессии

а) Найдем оценку ковариационной матрицы вектора b:

5,52259 -0,08136 -3,44878
S*(b)=S*2(XTX)1=0,496066(XTX)1= -0,08136 0,00267 0,04348
-3,44878 0,04348 2,21466

Так как на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов уравнения регрессии, то получим следующие несмещенные оценки этих дисперсий: