Образец заполнения таблицы исходных данных
№ | Наименование показателя | Значение показателя |
1 | Класс подверженности внешним факторам риска (K) | 1 |
№ | Наименование показателя | Значение показателя |
2 | Величина допустимого риска аварии (R*) | 22,169 |
3 | Формула преобразования gп® xп | xп=gп(1-0,88)+0,88 |
4 | Формула преобразования gм® xм | xм=gм(1-0,9)+0,9 |
5 | Формула преобразования gс® xс | xс=gс(1-0,786)+0,786 |
6 | Число этажей (m) | 16 |
7 | Число нес. констр. на этаже (n) | 4 |
8 | Число нес. констр. на нулевом цикле (v) | 6 |
9 | Минимальное число испытаний (Nmin) | 5349 |
6. Производится расчет значения m* с использованием программного обеспечения кафедры «ЭиИ».
7. Результаты расчета на ЭВМ оформляются в соответствии с образцом, приведенным в приложении 4.
8. Рассчитывается PA(формулы (3), (7)). При определении верхней границы интегрирования в формуле (7) необходимо ориентироваться на результаты произведенных статистических испытаний.
9. Рассчитывается N – значение нетто-ставки страхового тарифа (формула (1)).
Литература к задаче 4
1. Вентцель Е.С. Основы исследования операций.– М.: Советское радио, 1972.
2. Габрин К.Э., Мельчаков Е.А., Мельчаков А.П. К методике назначения нетто-тарифа при страховании объектов строительства // Сб. ст. Южно-Уральского государственного университета «Проблемы совершенствования и развития экономических отношений в переходной экономике».–Челябинск: Изд-во ЮУрГУ, 2000.
3. Мельчаков А.П., Габрин К.Э. Технология обеспечения конструктивной безопасности строящихся зданий и сооружений // Известия ВУЗов. Строительство.–2000.–№ 2-3.–С. 114 – 117.
4. Шепелев И.Г. Математические методы и модели управления в строительстве.–М.:Высшая школа, 1980.
Значения F | |||||
a | n1=1 | n1=2 | n1=3 | n1=4 | |
n2=10 | 0,05 | 4,96 | 4,10 | 3,71 | 3,48 |
0,10 | 10,04 | 7,56 | 6,55 | 5,99 | |
n2=11 | 0,05 | 4,84 | 3,98 | 3,59 | 3,26 |
0,10 | 9,65 | 7,2 | 6,22 | 5,67 | |
n2=12 | 0,05 | 4,75 | 3,88 | 3,36 | 3,41 |
0,10 | 9,33 | 7,2 | 5,67 | 5,74 | |
n2=13 | 0,05 | 4,67 | 3,8 | 3,49 | 3,18 |
0,10 | 9,07 | 6,7 | 6,22 | 5,2 | |
n2=14 | 0,05 | 4,60 | 3,74 | 3,34 | 3,11 |
0,10 | 8,86 | 6,51 | 5,56 | 5,03 |
Таблица П2. t-распределение Стьюдента
Значения t | ||
n | При a=0,1 | При a=0,05 |
10 | 1,812 | 2,228 |
11 | 1,796 | 2,201 |
12 | 1,782 | 2,179 |
13 | 1,771 | 2,160 |
14 | 1,761 | 2,145 |
Текст программы численного решения
системы семи дифференциальных уравнений
Sub DU()
x1=1 'начальные условия при t=0
x2=0 'начальные условия при t=0
x3=0 'начальные условия при t=0
x4=0 'начальные условия при t=0
x5=0 ' начальные условия при t=0
x6=0 ' начальные условия при t=0
x7=0 ' начальные условия при t=0
Sheets("1").Cells(k+2;2).Value=x1
Sheets("1").Cells(k+2;3).Value=x2
Sheets("1").Cells(k+2;4).Value=x3
Sheets("1").Cells(k+2;5).Value=x4
Sheets("1").Cells(k+2;6).Value=x5
Sheets("1").Cells(k+2;7).Value=x6
Sheets("1").Cells(k+2;8).Value=x7
dt=30/50
a12=Sheets("1").Cells(5;9).Value ' инт. потока
a13=Sheets("1").Cells(5;10).Value ' инт. потока
a21=Sheets("1").Cells(5;11).Value ' инт. потока
a23=Sheets("1").Cells(5;12).Value ' инт. потока
a34=Sheets("1").Cells(5;13).Value ' инт. потока
a45=Sheets("1").Cells(5;14).Value' инт. потока
a52=Sheets("1").Cells(5;15).Value ' инт. потока
a26=Sheets("1").Cells(5;16).Value ' инт. потока
a62=Sheets("1").Cells(5;17).Value ' инт. потока
a67=Sheets("1").Cells(5;18).Value ' инт. потока
a72=Sheets("1").Cells(5;19).Value ' инт. потока
For k = 0 To 50
k1=One(x1;x2;x3;x4;x5;x6;x7;a12;a13;a21)*dt
m1=Two(x1;x2;x3;x4;x5;x6;x7;a12;a26;a21;a23;a52;a62;a72)*dt
n1=Three(x1;x2;x3;x4;x5;x6;x7;a13;a23;a34)*dt
o1=Four(x1;x2;x3;x4;x5;x6;x7;a34;a45)*dt
p1=Five(x1;x2;x3;x4;x5;x6;x7;a45;a52)*dt
r1=Six(x1;x2;x3;x4;x5;x6;x7;a26;a67;a62)*dt
s1=Seven(x1;x2;x3;x4;x5;x6;x7;a67;a72)*dt
k2=One(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1; x6+0,5*r1;x7+0,5*s1;a12;a13;a21)*dt
m2=Two(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1; x6+0,5*r1;x7+0,5*s1;a12;a26;a21;a23;a52;a62;a72)*dt
n2=Three(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1;x6+0,5*r1;x7+0,5*s1;a13;a23;a34)*dt
o1=Four(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1;x6+0,5*r1;x7+0,5*s1;a34;a45)*dt
p1=Five(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1;x6+0,5*r1;x7+0,5*s1;a45;a52)*dt
r1=Six(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1;x6+0,5*r1;x7+0,5*s1;a26;a67;a62)*dt
s1=Seven(x1+0,5*k1;x2+0,5*m1;x3+0,5*n1;x4+0,5*o1;x5+0,5*p1;x6+0,5*r1;x7+0,5*s1;a67;a72)*dt
k3=One(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a12;a13;a21)*dt
m3=Two(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a12;a26;a21;a23;a52;a62;a72)*dt
n3=Three(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a13;a23;a34)*dt
o3=Four(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a34;a45)*dt
p3=Five(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a45;a52)*dt
r3=Six(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2; x6+0,5*r2;x7+0,5*s2;a26;a67;a62)*dt
s3=Seven(x1+0,5*k2;x2+0,5*m2;x3+0,5*n2;x4+0,5*o2;x5+0,5*p2;x6+0,5*r2;x7+0,5*s2;a67;a72)*dt
k4=One(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a12;a13;a21)*dt
m4=Two(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a12;a26;a21;a23;a52;a62;a72)*dt
n4=Three(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a13;a23;a34)*dt
o4=Four(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a34;a45)*dt
p4=Five(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a45;a52)*dt
r4=Six(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a26;a67;a62)*dt
s4=Seven(x1+k3;x2+m3;x3+n3;x4+o3;x5+p3;x6+r3;x7+s3;a67;a72)*dt
x1=x1+(k1+2*k2+2*k3+k4)/6
x2=x2+(m1+2*m2+2*m3+m4)/6
x3=x3+(n1+2*n2+2*n3+n4)/6
x4=x4+(o1+2*o2+2*o3+o4)/6
x5=x5+(p1+2*p2+2*p3+p4)/6
x6=x6+(r1+2*r2+2*r3+r4)/6
x7=x7+(s1+2*s2+2*s3+s4)/6
Sheets("1").Cells(k+3;2).Value=x1
Sheets("1").Cells(k+3;3).Value=x2
Sheets("1").Cells(k+3;4).Value=x3
Sheets("1").Cells(k+3;5).Value=x4
Sheets("1").Cells(k+3;6).Value=x5
Sheets("1").Cells(k+3;7).Value=x6
Sheets("1").Cells(k+3;8).Value=x7
Next
End Sub
Function One(x1;x2;x3;x4;x5;x6;x7;a12;a13;a21)'Вер.P1
One=-(a12+a13)*x1+a21*x2
End Function
FunctionTwo(x1;x2;x3;x4;x5;x6;x7;a12;a26;a21;a23;a52;a62;a72)'Вер.P4
Two=a12*x1-(a26+a21+a23)*x2+a52*x5+a62*x6+a72*x7
End Function
Function Three(x1;x2;x3;x4;x5;x6;x7;a13;a23;a34)'Вер.P3
Three=a13*x1+a23*x2-a34*x3
End Function
Function Four(x1;x2;x3;x4;x5;x6;x7;a34;a45)'Вер.Р4
Four=a34*x3-a45*x4
End Function
Function Five(x1;x2;x3;x4;x5;x6;x7;a45;a52)'Вер.Р5
Five=a45*x4-a52*x5
End Function
Function Six(x1;x2;x3;x4;x5;x6;x7;a26;a67;a62)'Вер.Р6
Six=a26*x2-(a67+a62)*x6
End Function
Function Seven(x1;x2;x3;x4;x5;x6;x7;a67;a72)'Вер.Р7
Seven=a67*x6-a72*x7
End Function
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | |
1 | P1 | P2 | P3 | P4 | P5 | P6 | R | ||||||||||||
2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | ||
3 | 2 | 9,33E-1 | 6,61E-02 | 7,86E-04 | 4,49E-04 | 2,49E-05 | 3,58E-05 | 1,87E-06 | 433 | 4 | 0,4 | 0,5 | 3 | 2 | 624 | 2,6 | 3,5 | ||
4 | 3 | 9,13E-1 | 8,39E-02 | 1,04E-03 | 1,12E-03 | 1,23E-04 | 7,14E-05 | 9,83E-06 | 12 | 13 | 21 | 23 | 34 | 45 | 52 | 26 | 62 | 67 | 72 |
5 | 4 | 9,07E-1 | 8,87E-02 | 1,11E-03 | 1,79E-03 | 2,85E-04 | 1,00E-04 | 2,17E-05 | 0,25 | 0,002 | 2,5 | 0,002 | 2 | 0,33 | 0,5 | 0,002 | 0,39 | 0,39 | 0,29 |
6 | 5 | 9,04E-1 | 8,99E-02 | 1,14E-03 | 2,41E-03 | 4,94E-04 | 1,22E-04 | 3,60E-05 | |||||||||||
7 | 6 | 9,03E-1 | 9,02E-02 | 1,14E-03 | 2,96E-03 | 7,34E-04 | 1,39E-04 | 5,14E-05 | |||||||||||
8 | 7 | 9,02E-1 | 9,03E-02 | 1,15E-03 | 3,44E-03 | 9,92E-04 | 1,52E-04 | 6,71E-05 | |||||||||||
9 | 8 | 9,01E-1 | 9,02E-02 | 1,14E-03 | 3,86E-03 | 1,26E-03 | 1,61E-04 | 8,26E-05 | |||||||||||
10 | 9 | 9,00E-1 | 9,02E-02 | 1,14E-03 | 4,23E-03 | 1,52E-03 | 1,68E-04 | 9,76E-05 | |||||||||||
11 | 10 | 8,99E-1 | 9,02E-02 | 1,14E-03 | 4,56E-03 | 1,78E-03 | 1,73E-04 | 1,12E-04 | |||||||||||
12 | 11 | 8,98E-1 | 9,01E-02 | 1,14E-03 | 4,84E-03 | 2,02E-03 | 1,77E-04 | 1,25E-04 | |||||||||||
… | … | … | … | … | … | … | … | … | |||||||||||
34 | 33 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,70E-03 | 4,34E-03 | 1,87E-04 | 2,41E-04 | |||||||||||
35 | 34 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,71E-03 | 4,37E-03 | 1,87E-04 | 2,42E-04 | |||||||||||
36 | 35 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,72E-03 | 4,39E-03 | 1,87E-04 | 2,43E-04 | |||||||||||
37 | 36 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,73E-03 | 4,40E-03 | 1,87E-04 | 2,44E-04 | |||||||||||
38 | 37 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,74E-03 | 4,42E-03 | 1,87E-04 | 2,45E-04 | |||||||||||
39 | 38 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,75E-03 | 4,43E-03 | 1,87E-04 | 2,46E-04 | |||||||||||
40 | 39 | 8,92E-1 | 9,00E-02 | 1,13E-03 | 6,76E-03 | 4,45E-03 | 1,87E-04 | 2,47E-04 | |||||||||||
41 | 40 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,76E-03 | 4,46E-03 | 1,87E-04 | 2,47E-04 | |||||||||||
42 | 41 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,77E-03 | 4,47E-03 | 1,87E-04 | 2,48E-04 | |||||||||||
43 | 42 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,77E-03 | 4,47E-03 | 1,87E-04 | 2,48E-04 | |||||||||||
44 | 43 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,77E-03 | 4,48E-03 | 1,87E-04 | 2,49E-04 | |||||||||||
45 | 44 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,78E-03 | 4,49E-03 | 1,87E-04 | 2,49E-04 | |||||||||||
46 | 45 | 8,91E-1 | 9,00E-02 | 1,13E-03 | 6,78E-03 | 4,49E-03 | 1,87E-04 | 2,49E-04 | |||||||||||
47 | 46 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,78E-03 | 4,50E-03 | 1,87E-04 | 2,50E-04 | |||||||||||
48 | 47 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,78E-03 | 4,50E-03 | 1,87E-04 | 2,50E-04 | |||||||||||
49 | 48 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,79E-03 | 4,51E-03 | 1,87E-04 | 2,50E-04 | |||||||||||
50 | 49 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,79E-03 | 4,51E-03 | 1,87E-04 | 2,50E-04 | |||||||||||
51 | 50 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,79E-03 | 4,51E-03 | 1,87E-04 | 2,51E-04 | |||||||||||
52 | 51 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,79E-03 | 4,51E-03 | 1,87E-04 | 2,51E-04 | |||||||||||
53 | 52 | 8,91E-01 | 9,00E-02 | 1,13E-03 | 6,79E-03 | 4,52E-03 | 1,87E-04 | 2,51E-04 |