Министерство образования Российской Федерации
Южно-Уральский государственный университет
Кафедра «Экономика и инвестиции»
_
_
Габрин К.Э.
МАТЕМАТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ
Семестровое задание
Челябинск
Издательство ЮУрГУ
2000
УДК
ББК
Габрин К.Э., Математические методы и модели: Семестровое задание и методические рекомендации к решению задач. – Челябинск: Издательство ЮУрГУ, 2000. – 39 с.
Приведены задачи семестрового задания, методические указания к их решению, примеры вычислений, рекомендуемая литература и приложения.
Пособие предназначено для студентов специальностей 060811, 061101, 061120.
Табл. 12, прилож. 4, список лит. – 13 назв.
Одобрено учебно-методической комиссией факультета «Экономика и управление».
Рецензент: Никифоров К.В.
Задача 1
Многофакторный регрессионный и корреляционный анализ
Варианты задач с 1 по 25 с указанием результативного y и факторных x1, x2признаков приведены в табл. 1.
По выборочным данным, представленным в табл. 2 и табл. 3, исследовать на основе линейной регрессионной модели зависимость результативного признака от показателей производственно-хозяйственной деятельности предприятий.
Варианты задач
№ вар. | Результативный признак | Факторные признаки | № вар. | Результативный признак | Факторные признаки |
1 | y1 | x1,x3 | 14 | y3 | x1,x14 |
2 | y2 | x1,x5 | 15 | y2 | x5,x9 |
3 | y2 | x1,x7 | 16 | y3 | x8,x10 |
4 | y2 | x1,x11 | 17 | y3 | x7,x14 |
5 | y2 | x1,x10 | 18 | y3 | x3,x6 |
6 | y1 | x3,x4 | 19 | y3 | x1,x14 |
7 | y2 | x3,x11 | 20 | y1 | x2,x6 |
8 | y2 | x11,x5 | 21 | y1 | x3,x7 |
9 | y1 | x3,x5 | 22 | y2 | x5,x8 |
10 | y2 | x11,x6 | 23 | y2 | x9,x10 |
11 | y2 | x1,x6 | 24 | y3 | x4,x11 |
12 | y2 | x1,x12 | 25 | y3 | x1,x12 |
13 | y2 | x1,x2 |
Обозначения и наименование показателей
производственно-хозяйственной деятельности предприятий
Обозначение показателя | Наименование показателя |
y1 | Производительность труда, тыс.руб./чел. |
y2 | Индекс снижения себестоимости продукции |
y3 | Рентабельность |
x1 | Трудоемкость единицы продукции |
x2 | Удельный вес рабочих в составе ППР |
x3 | Удельный вес покупных изделий |
x4 | Коэффициент сменности оборудования, смен |
x5 | Премии и вознаграждения на одного работника ППР, тыс.руб. |
x6 | Удельный вес потерь от брака,% |
x7 | Фондоотдача активной части ОПФ, руб./руб. |
x8 | Среднегодовая численность ППР, чел. |
x9 | Среднегодовая стоимость ОПФ, млн.руб. |
x10 | Среднегодовой фонд заработной платы ППР |
x11 | Фондовооруженность труда, тыс.руб./чел. |
x12 | Оборачиваемость нормируемых оборотных средств, дн. |
x13 | Оборачиваемость ненормируемых оборотных средств, дн. |
x14 | Непроизводительные расходы, тыс.руб. |
Исходные данные для расчета
№ | y1 | y2 | y3 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 |
1 | 9,4 | 62 | 10,6 | 0,23 | 0,62 | 0,4 | 1,35 | 0,88 | 0,15 | 1,91 | 7394 | 39,53 | 14257 | 5,35 | 173,9 | 11,88 | 28,13 |
2 | 9,9 | 53,1 | 9,1 | 0,43 | 0,76 | 0,19 | 1,39 | 0,57 | 0,34 | 1,68 | 11586 | 40,41 | 22661 | 3,9 | 162,3 | 12,6 | 17,55 |
3 | 9,1 | 56,5 | 23,4 | 0,26 | 0,71 | 0,44 | 1,27 | 0,7 | 0,09 | 1,89 | 7801 | 37,02 | 14903 | 4,88 | 101,2 | 8,28 | 19,52 |
4 | 5,5 | 30,1 | 9,7 | 0,43 | 0,74 | 0,25 | 1,1 | 0,84 | 0,05 | 1,02 | 6371 | 41,08 | 12973 | 5,65 | 177,8 | 17,28 | 18,13 |
5 | 6,6 | 18,1 | 9,1 | 0,38 | 0,72 | 0,02 | 1,23 | 1,04 | 0,48 | 0,88 | 4210 | 42,39 | 6920 | 8,85 | 93,2 | 13,32 | 21,21 |
6 | 4,3 | 13,6 | 5,4 | 0,42 | 0,68 | 0,06 | 1,39 | 0,66 | 0,41 | 0,62 | 3557 | 37,39 | 5736 | 8,52 | 126,7 | 17,28 | 22,97 |
7 | 7,4 | 89,8 | 9,9 | 0,30 | 0,77 | 0,15 | 1,38 | 0,86 | 0,62 | 1,09 | 14148 | 101,7 | 26705 | 7,19 | 91,8 | 9,72 | 16,38 |
8 | 6,6 | 76,6 | 19,1 | 0,37 | 0,77 | 0,24 | 1,35 | 1,27 | 0,5 | 1,32 | 15118 | 81,32 | 28025 | 5,38 | 70,6 | 8,64 | 16,16 |
9 | 5,5 | 32,3 | 6,6 | 0,34 | 0,72 | 0,11 | 1,24 | 0,68 | 1,2 | 0,68 | 6462 | 59,92 | 11049 | 9,27 | 97,2 | 9,0 | 20,09 |
10 | 9,4 | 199 | 14,2 | 0,23 | 0,79 | 0,47 | 1,4 | 0,86 | 0,21 | 2,3 | 24628 | 107,3 | 45893 | 4,36 | 80,3 | 14,76 | 15,98 |
11 | 5,7 | 90,8 | 8 | 0,41 | 0,71 | 0,2 | 1,28 | 0,45 | 0,66 | 1,43 | 1948 | 80,83 | 36813 | 4,16 | 128,5 | 10,44 | 22,76 |
12 | 5,2 | 82,1 | 17,5 | 0,41 | 0,79 | 0,24 | 1,33 | 0,74 | 0,74 | 1,82 | 18963 | 59,42 | 33956 | 3,13 | 94,7 | 14,76 | 15,41 |
13 | 10,0 | 76,2 | 17,2 | 0,22 | 0,76 | 0,54 | 1,22 | 1,03 | 0,32 | 2,62 | 9185 | 36,96 | 17016 | 4,02 | 85,3 | 20,52 | 19,35 |
14 | 6,7 | 37,1 | 12,9 | 0,31 | 0,79 | 0,29 | 1,35 | 0,96 | 0,39 | 1,24 | 6391 | 37,21 | 11688 | 5,82 | 85,3 | 7,92 | 14,63 |
15 | 9,4 | 51,6 | 13,2 | 0,24 | 0,70 | 0,56 | 1,2 | 0,98 | 0,28 | 2,03 | 6555 | 32,87 | 12243 | 5,01 | 116,6 | 18,72 | 22,62 |
Множественный корреляционный анализ состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на ее основе оценок частных и множественных коэффициентов корреляции и детерминации.
Парный и частный коэффициенты корреляции характеризуют тесноту линейной зависимости между двумя переменными соответственно на фоне действия и при исключении влияния всех остальных показателей, входящих в модель. Диапазон изменения этих коэффициентов [-1;1].
Множественный коэффициент корреляции характеризует тесноту связи между одной переменной (результативной) и остальными, входящими в модель. Диапазон изменения этого коэффициента [0;1].
Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации; он характеризует долю дисперсии одной переменной (результативной), обусловленной влиянием остальных, входящих в модель.
Дополнительная задача корреляционного анализа (основная – в регрессионном) – оценка уравнения регрессии.
Исходной для анализа является матрица Xразмерности (n´k), которая представляет собой n наблюдений для каждого из k факторов. Оцениваются: вектор средних Xср, вектор среднеквадратических отклонений S и корреляционная матрица R:
Xср=(x1ср, x2ср,…, xjср,…, xkср);
S=(s1, s2, …, sj, …, sk);
1 | r12 | … | r1k | |
R= | r21 | 1 | … | r2k |
… | … | … | … | |
rk1 | rk2 | … | 1 |
где rjl=[S(xij-xjср)(xil-xlср)]/(nsjsl), j,l=1,2,…,k;
sj=([S(xij- xjср)2]/n)0,5, i=1…n;
xil – значение i-того наблюдения j-того фактора.
Кроме того, находятся оценки частных и множественных коэффициентов корреляции любого порядка. Например, частный коэффициент корреляции порядка k-2 между факторами X1и X2 равен
r12/3,4,…,k=-R12/(R11R22)0,5,
где Rjl – алгебраическое дополнение элемента r12 матрицы R.
Множественный коэффициент корреляции порядка k-1 фактора X1 (результативного признака) определяется по формуле
r1/2,3,…,k= r1=(|R12|/R11)0,5,
где |R12|– определитель матрицыR.
Значимость парных и частных коэффициентов корреляции проверяется по t-критерию Стьюдента. Наблюдаемое значение критерия находится по формуле
tнабл=(n-l-2)0,5r/(1-r2)0,5,
где r – оценка коэффициента, l – порядок коэффициента корреляции (число фиксируемых факторов).
Коэффициент корреляции считается значимым (т.е. гипотеза H0: r=0 отвергается с вероятностью ошибки a), если |tнабл|>tкр, определяемого по таблицам t-распределения (Приложение 1) для заданного a иn=n-l-2.
Значимость множественного коэффициента корреляции (или его квадрата – коэффициента детерминации) определяется по F-критерию. Наблюдаемое значение, например, для r21/2,…k, находится по формуле
Fнабл= [r21/2,…k/(k-1)]/[(1-r21/2,…k)/(n-k)].
Множественный коэффициент корреляции считется значимым, если Fнабл>Fкр(a, k-1, n-k), где Fкр определяется по таблице F-распределения (Приложение 1) для заданных a, n1=k-1 и n2=n-k.