Смекни!
smekni.com

Расширения полей (стр. 4 из 7)

В случае характеристики нуль согласно сказанному выше каждый неразложимый многочлен (а потому и каждое алгебраи­ческое расширение) является сепарабельным. Позднее мы увидим, что большинство наиболее важных и интересных расширений полей сепарабельны и что существуют целые классы полей, вообще не имеющих несепарабельных расширений (так называемые «совер­шенные поля»). По этой причине в дальнейшем все связанное специально с несепарабельными расширениями набрано мелким шрифтом.

Рассмотрим теперь алгебраическое расширение S = D (q). Когда степень n уравнения f(x) = 0, определяющего это расширение, равна степени (S : D), редуцированная степень m оказывается равной числу изоморфизмов поля S в следующем смысле: рассмот­рим лишь такие изоморфизмы S@S', при которых элементы подполя D остаются неподвижными и, следовательно, S перево­дится в эквивалентное поле S' (изоморфизмы поля S над полем D) и при которых поле-образ S' лежит вместе с полем S внутри некоторого общего для них поля W. В этих условиях имеет место теорема:

При подходящем выборе поля W расширение S=D(q) имеет ровно m изоморфизмов над D и при любом выборе поля W поле S не может иметь более m таких изоморфизмов.

Доказательство. Каждый изоморфизм над D должен пере­водить элемент q в сопряженный с ним элемент q' из W. Выбе­рем W так, чтобы f(x) разлагался над W на линейные множители; тогда окажется, что элемент q имеет ровно m сопряженных эле­ментов q,q', ... При этом, как бы ни выбиралось поле W, элемент q не будет иметь в нем более m сопряженных. Заметим теперь, что каждый изоморфизм D(q)@D(q') над D полностью определяется заданием соответствия q®q'. Действительно, если q переходит в q' и все элементы из D остаются на месте, то элемент

3akqk (ak0D)

должен переходить в

3akqNk

а этим определяется изоморфизм.

В частности, если q — сепарабельный элемент, то m = n и, следо­вательно, число изоморфизмов над основным полем равно степени расширения.

Если имеется какое-то фиксированное поле, содержащее все рассматриваемые поля, в котором содержатся все корни каждого уравнения f(x) = 0 (как, например, в поле комплексных чисел), то в качестве W можно раз и навсегда взять это поле и поэтому отбросить добавление «внутри некоторого W» во всех предложе­ниях об изоморфизмах. Так всегда поступают в теории числовых полей. Позднее мы увидим, что и для абстрактных полей можно построить такое поле W.

Обобщением приведенной выше теоремы служит следующее утверждение:

Если расширение S получается из D последовательным присоединением m

алгебраических элементов a1, ..., am, причем каждое из ai,- является корнем

неразложимого над D(a1, ..., ai-1) уравнения редуцированной степени n'i, то

m

расширение S имеет ровно Õni¢ изоморфизмов над D и ни в одном

1

расширении нет большего числа таких изоморфизмов поля S.

Доказательство. Для m = 1 теорема уже была доказана выше. Предположим ее справедливой для расширения S1 = D(a1, ..., am-1): в некотором подходящем расширении

m-1

W1 есть ровно Õni¢ изоморфизмов поля S над D.

1 m-1

Пусть S1®S1— один из этих Õni¢ изоморфизмов. Утверждается, что в подходящим образом выбранном поле W он может быть продолжен до изоморфизма S = S1 (am) @S= S(am) не более чем n¢m способами.

Элемент am удовлетворяет некоторому уравнению f1(x) = 0 над S1 с n¢m раз­личными корнями. С помощью изоморфизма S1®S1многочлен f1(x) перево­дится в некоторый многочлен f1(x). Но тогда f1(x) в подходящем расширении имеет опять-таки n¢m различных корней и не больше. Пусть am— один из этих корней. В силу выбора элемента am изоморфизм S1@S1 продолжается до изоморфизма S (am) @S (am) с am®am одним и только одним способом: действительно, это продолжение задается формулой

åckamk®å ckamk

Так как выбор элемента am может быть осуществлен n'm способами, существует n'm продолжений такого сорта для выбранного изоморфизма å1®å1

Так как в свою очередь этот изоморфизм может быть выбран

m-1

Õn'i способами,

1

то всего существует (в том поле W, в котором содержатся все корни всех рассматриваемых уравнений)

m-1 m

Õ n'i×n'm = Õ n'i

1 1

изоморфизмов расширения S над полем D, что и требовалось доказать.

Если ni — полная (нередуцированная) степень элемента ai над D (a1,...,ai-1), то ni равно степени расширения D (a1, ... , ai) поля D(a1, ... , ai-1);

следовательно, степень (S : D) равна

m

Õn'i .

1

Если сравнить это число с числом изоморфизмов

m

Õn'i .

1

то получится следующее предложение:

Число изоморфизмов расширения S = D(a1, ... , am) над D(в некотором подходящем расширении W) равно степени (S : D) тогда и только тогда, когда каждый элемент ai сепарабелен над полем D(a1, ... , ai-1). Если же хотя бы один элемент ai несепарабелен над соответствующим полем, то число изоморфизмов меньше степени расширения.

Из этой теоремы сразу получается несколько важных следствий. Прежде всего теорема утверждает, что свойство каждого элемента ai быть сепарабельным над предыдущим полем есть свойство самого расширения S независимо от выбора порождающих элементов ai. Так как произвольный элемент b поля может быть взят в качестве первого порождающего, элемент b оказывается сепарабельным, если все ai являются таковыми. Итак:

Если к полю D последовательно присоединяются элементы ai, ... ,an и каждый элемент ai оказывается сепарабельным над полем, полученным присоеди­нением предыдущих элементов a1,a2 ,…,ai-1 то расширение

S = D(a1, ... ,an)

сепарабельно над D.

В частности, сумма, разность, произведение и частное сепарабедьных элементов сепарабельны.

Далее, если b сепарабелен над S, а поле S сепарабельно над D, то эле­мент b сепарабелен над D. Это объясняется тем, что b удовлетворяет некото­рому уравнению с конечным числом коэффициентов a1, ... ,am из S и, сле­довательно, сепарабелен над D (a1, ... ,am). Тем самым сепарабельно и расширение

D (a1,..., am,b).

Наконец, имеет место следующее предложение: числа изоморфизмов конечного сепарабельного расширения S над полем D равно степени расширения (S : D).

4. Бесконечные расширения полей.

Каждое поле получается из своего простого подполя с помощью конечного или бесконечного расширения. В этой главе рассматри­ваются бесконечные расширения полей, сначала алгебраические, а затем — трансцендентные.

4.1. Алгебраически замкнутые поля

Среди алгебраических расширений заданного поля важную роль играют, конечно, максимальные алгебраические расширения, т. е. такие, которые не допускают дальнейшего алгебраического расширения. Существование таких расширений будет доказано в настоящем параграфе.

Чтобы поле W было максимальным алгебраическим расшире­нием, необходимо следующее условие: каждый многочлен кольца W[x]полностью разлагается на линейные множители. Это условие является и достаточным. Действительно, если каждый многочлен в W[x]разлагается на линейные множи­тели, то все простые многочлены в W[x]линейны и каждый эле­мент любого алгебраического расширения W' поля W оказывается корнем некоторого линейного многочлена xaв W[x],т. е. совпадает с некоторым элементом aполя W.

Поэтому дадим следующее определение:

Поле W называется алгебраически замкнутым, если любой многочлен в W[x] разлагается на линейные множители.

Равнозначное с этим определение таково: поле W, алгебраически замкнуто, если каждый отличный от константы многочлен из W[x] обладает в W хоть одним корнем, т. е. хоть одним линейным множителем в W[x].

Действительно, если такое условие выполнено и произвольно взятый многочлен f(x) разлагается на неразложимые множители, то все они должны быть линейными.

«Основная теорема алгебры» утверждает, что поле комплексных чисел алгебраически замкнуто. Следующим примером алгебраически замкнутого поля может служить поле всех комплексных алгебраических чисел, т. е. множе­ство тех комплексных чисел, которые удовлетворяют какому-либо уравнению с рациональными коэффициентами. Комплексные корни уравнения с алгебраическими коэффициентами являются и в самом деле алгебраическими не только над полем алгебраических чисел, но и над полем рациональных чисел, т. е. сами являются алгебра­ическими числами.

Здесь мы покажем, как построить алгебраически замкнутое расширение произвольно заданного поля P и притом чисто алгебраическим путем. Штейницу принадлежит следующая

Основная теорема. Для каждого поля Pсуществует алгебраически замкнутое алгебраическое расширение W.Сточностью до эквивалентности это расширение определено однозначно: любые два алгебраически замкнутых алгебраических расширения W, W 'поля P эквивалентны.