Смекни!
smekni.com

Расширения полей (стр. 6 из 7)

Единственность поля W. Пусть W и W'— два поля, являющиеся алгебраическими и алгебраически замкнутыми рас­ширениями поля Р. Докажем эквивалентность этих полей. Для этого будем считать, что оба поля вполне упорядочены. Построим для каждого отрезка  из W (само поле W также считается од­ним из таких отрезков) подмножество ¢ в W' и некоторый изо­морфизм

P(Â) @ Р(¢).

Последний должен удовлетворять следующим рекуррентным соот­ношениям.

1. Изоморфизм P(Â) @ Р(¢) должен оставлять каждый эле­мент поля Р на месте.

2. Изоморфизм P(Â) @ Р(¢) при ÁÌ должен быть про­должением изоморфизма Р(Á) @Р(Á').

3. Если Â обладает последним элементом a, так что Â = ÁÈ{a}, и если а — корень неразложимого в Р (Á) многочлена f(x), то элемент а' должен быть первым корнем соответствующего в силу Р(Á) @Р(Á'), многочлена f¢(x) во вполне упорядоченном поле W'.

Нужно показать, что этими тремя требованиями действительно определяется изоморфизм P(Â) @ Р(¢), если только он уже оп­ределен для всех предыдущих отрезков ÁÌÂ. Здесь необходимо различать два случая.

Первый случай. Множество  не имеет последнего элемента. Тогда каждый элемент а принадлежит некоторому предыдущему отрезку Á; поэтому  является объединением отрезков Á, а по­тому Р(Â) — объединением полей Р(Á) для ÁÌÂ. Так как каж­дый из изоморфизмов Р(Á) @Р(Á') является продолжением всех предыдущих, то каждому элементу a при всех этих изоморфизмах сопоставляется лишь один элемент a'. Поэтому существует одно и только одно отображение P(Â) → Р(¢), продолжающее все предыдущие изоморфизмы Р(Á)→ Р(Á'), а именно —отображение a®a'. Очевидно, оно является изоморфизмом и удовлетворяет требованиям 1 и 2.

Второй случай. Множество  имеет последний элемент а; сле­довательно,  =ÁÈ{а}. Вследствие требования 3 элемент а', со­поставляемый элементу а, однозначно определен. Так как а' над полем Р(Á') (в смысле рассматриваемого изоморфизма) удовлетво­ряет «тому же» неразложимому уравнению, что и а над Р(Á), то изоморфизм Р(Á)→Р(Á') (и в том случае, когда Á пусто, т. е. тождественный изоморфизм Р®Р) продолжается до изоморфизма Р(Á, a) ®Р(Á', a¢), при котором а переходит в а'. Каждым из приведенных выше требований этот изоморфизм определен однозначно, потому что каждая рациональная функция j(а) с коэффициентами из  обязательно переходит в функцию j'(а') с соответствующими коэффициентами из Á'. То, что так определенный изоморфизм P(Â) ® Р(¢) удовлетворяет требованиям 1 и 2, очевидно.

Тем самым построение изоморфизма P(Â)→Р(¢) завершено. Обозначим через W" объединение всех полей Р(¢); тогда существует изоморфизм Р(W)®W" или W®W", оставляющий на месте каждый элемент поля Р. Так как поле W алгебраически замкнуто, таким же должно быть и W", а потому W" совпадает со всем полем W¢. Отсюда следует эквивалентность полей W и W¢.

Значение алгебраически замкнутого расширения данного поля состоит в том, что с точностью до эквивалентности оно содержит все возможные алгебраические расширения этого поля. Точнее:

Если W— алгебраически замкнутое алгебраическое расширение поля Р и S— произвольное алгебраическое расширение поля Р, то внутри Wсуществует расширение S0, эквивалентное расширению S.

Доказательство. Продолжим S до некоторого алгебраи­чески замкнутого алгебраического расширения W'. Оно будет алгебраическим и над Р, а потому эквивалентным расширению W. При каком-то изоморфизме, переводящем W' в W и сохраняющем неподвижным каждый элемент из Р, поле S переходит в некоторое эквивалентное ему подполе S0 вW.

4.2. Простые трансцендентные расширения.

Каждое простое трансцендентное расширение поля D, как мы знаем, эквивалентно полю частных D(x)кольца многочленов D[x]. Поэтому мы изучим это поле частных

W = D(x).

Элементами поля W служат рациональные функции

h = f(x)/g(x).

Это представление можно считать несократимым (f и gвзаимно просты). Наибольшая из степеней многочленов f(x) и g(х) назы­вается степенью функции h.

Теорема. Каждый отличный от константы элемент hсте­пени п трансцендентен над Dи поле D(x) — алгебраическое рас­ширение поля D(h) степени п.

Доказательство. Представление h= f(х)/g(х) будем считать несократимым. Тогда элемент х удовлетворяет уравнению

g(x)×h - f(x)=0

с коэффициентами из D(h). Эти коэффициенты не могут быть все равны нулю. Действительно, если бы все они равнялись нулю и akбыл бы при той же степени х любым ненулевым коэффициентом многочлена g(x), а bk— ненулевым коэффициентом многочлена f(x), то должно было бы иметь место равенство

akh - bk = 0

откуда h = bk/ak =const, что противоречит предположению. Сле­довательно, элемент х алгебраичен над D(h).

Если бы элемент h был алгебраическим над D, то и х был бы алгебраическим над D, что, однако, не так. Следовательно, элемент h трансцендентен над D.

Элемент х является корнем многочлена степени n

g(z)h - f(z)

в кольце D(h)(z).Этот многочлен неразложим в D(h)[z], потому что иначе он был бы разложим п в кольце D[h, z], и, так как он линеен по h, один из множителей должен был бы зависеть не от h, а лишь от z. Но такого множителя не может быть, потому что g(z) и f(z) взаимно просты.

Следовательно, элемент х является алгебраическим степени п над полем D(h). Отсюда следует утверждение о том, что (D(x) : D(h)) = n

Для дальнейшего отметим, что многочлен

g(z)h - f(z)

не имеет множителей, зависящих только от z (т. е. лежащих в D[z]). Это утверждение остается верным, когда h заменяется своим значением f(х)/g(х) и умножается на знаменатель g(х) тем самым многочлен

g(z)f(x) - f(z)g(x)

кольца D[x, z] не имеет множителей, зависящих только от z.

Из доказанной теоремы вытекают три следствия.

1. Степень функции hf(х)/g(х) зависит лишь от полей D(h) и D(x), а не от того или иного выбора порождающего элемента х.

2. Равенство Д (h) = D(х)имеет место тогда и только тогда, когда h имеет степень 1, т. е. является дробно-линейной функ­цией. Это означает: порождающим элементом поля, кроме эле­мента х, может служить любая дробно-линейная функция от x и только такая функция.

3. Любой автоморфизм поля D(х), оставляющий на месте каждый элемент поля D, должен переводить элемент xв какой-либо порождающий элемент поля. Обратно, если х переводится в какой-либо порождающий элемент х = (ax+b)/(cx+d) и каждая функция j(х)в функцию j(х), то получается автоморфизм, при котором все элементы из D остаются на месте. Следовательно,

Все автоморфизмы поля D(x) над полем D являются дробно-линейными подстановками

x = (ax+b)/(cx+d), ad – bc ¹ 0.

Важной для некоторых геометрических исследований является

Теорема Люрота. Каждое промежуточное поле S, для которого DÌSÍD(x), является простым трансцендентным расширением: S = D(q).

Доказательство. Элемент х должен быть алгебраическим над S, потому что если h — любой элемент из S не принадлежащий полю D, то, как было показано, элемент х является алгебраическим над D(h) и тем более алгебраическим над S. Пусть неразложимый в кольце многочленов S[z] многочлен со старшим коэффициентом 1 и корнем x имеет вид

f0(z) = zn+a1zn-1+…+an. (1)

Выясним строение этого многочлена.

Элементы ai являются рациональными функциями от x. С помощью умножения на общий знаменатель их можно сделать целыми рациональными функциями и, кроме того, получить многочлен относительно x с содержанием 1:

f( x, z) =b0(x)zn+b1 (x)zn-1+…+bn(x).

Степень этого многочлена по х обозначим через т, а по z — через п.

Коэффициенты ai= bi/ b0 из (1) не могут все быть независимыми от х, так как иначе х оказался бы алгебраическим элементом над D; поэтому один из них, скажем,

q = ai = bi(x)/ b0(x),

должен фактически зависеть от х;запишем его в несократимом виде:

q = g(x)/h(x)

Степени многочленов g(х) и h(х) не превосходят т. Многочлен

g(z) - qh(z) = g(z) – (g(x)/h(x))h(z)

(не являющийся тождественным нулем) имеет корень z = x, апотому он делится на f 0(z) в кольце S[z]. Если перейти от этих рациональных по х многочленов к целым по х многочленам с содержанием 1, то отношение делимости сохра­нится, и мы получим

h(x)g(z)-g(x)h(z) = q(x, z)f(x, z).

Левая часть в этом равенстве имеет степень по х, не превосхо­дящую т. Но справа уже многочлен f имеет степень т; следо­вательно, степень левой части в точности равна т и q(х, z) не зависит от х. Однако зависящий лишь от zмножитель не может делить левую часть (см. выше); поэтому q(х, z) является кон­стантой: