Пару векторных функций (u(t), x(t)), т. е. управление u(t) и соответствующую фазовую траекторию x(t), мы будем называть в дальнейшем процессом управления или просто процессом.
2. Задача управления. Часто встречается следующая задача, связанная с управляемыми объектами. В начальный момент времени t0объект находится в фазовом состоянии x0; требуется выбрать такое управление u(t), которое переведёт объект в заранее заданное конечное фазовое состояние x1 (отличное от x0; рис. 5). При этом нередко бывает, что начальное состояние x0заранее не известно. Рассмотрим один из наиболее типичных примеров. Объект должен устойчиво работать в некотором режиме (т. е. находиться в некотором фазовом состоянии x1). В результате тех или иных причин (например, под воздействием неожиданного толчка) объект может выйти из рабочего состояния x1 и оказаться в некотором другом состоянии x0. При этом точка x0, в которую может попасть объект, заранее не известна, и мы должны уметь так управлять объектом, чтобы из любой точки x0 (или хотя бы из точек x0 достаточно близких к x1) вернуть его в рабочее состояние x1 (рис. 6).
Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы («регуляторы», «автоматические управляющие устройства» и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления.
Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта.
|
3.
Обозначив скорость движения через x2(т. е. положив
Здесь величины x1, x2 являются фазовыми координатами тела G, а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11.
Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости.
Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид
где f1, f2,…, fn – некоторые функции, определяемые внутренним устройством объекта.
В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде
где x ─ вектор с координатами x1,…, xn, u – вектор с координатами u1,…, ur и, наконец, f(x, u) – вектор, координатами которого служат правые части системы (1.2).
Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u1, u2,…, ur. Напротив, зная поведение величин u1, u2,…,ur, т. е. зная управляющие функции u1(t), u2(t),…, ur(t) для t>t0мы сможем из системы уравнений
или, что то же самое, из векторного уравнения
(1.5)
однозначно определить движение объекта (при t>t0), если нам известно начальное фазовое состояние объекта (в момент t=t0). Иначе говоря, задание управления u(t) и начального фазового состояния x0 однозначно определяет фазовую траекторию x(t) при t>t0, что согласуется со сделанными ранее (стр. 1) предположениями о свойствах объекта.
Тот факт, что задание начального фазового состояния (в момент t=t0) позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t>t0, вытекает из теоремы о существовании и единственности решений системы дифференциальных уравнений.