Смекни!
smekni.com

Уравнение Кортевега - де Фриса, солитон, уединенная волна (стр. 3 из 5)

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега—де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега—де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега—де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега—де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона [4]. Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега—де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега—де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена—Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега—де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега—де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается

Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a0 ch-1(

)

где аа - амплитуда, а l— половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега— де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем [4] и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

ut + иих + bиххх = 0(3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к

.

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы [8] стали называться солитонами [9]. Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в [4].

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике QT={(t,x):0<t<T, x Î[0,l].

ut + иих + bиххх = 0(3.2)

u(x,t)|x=0=u(x,t)|x=l (3.3)

с начальным условием

u(x,t)|t=0=u0(x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u0(х) рассматривалась во многих работах [10-17]. Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе [10] с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье [11] в пространстве L¥(0,T,Hs(R1)), где s>3/2, а в случае периодической задачи - в пространстве L¥(0,T,H¥(C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге [12].