Смекни!
smekni.com

Шпоры по вышке (стр. 2 из 6)

Если среди n векторов какие-то kлинейно-зависимы, то вся система векторов является линейно-зависимой.

Если система n векторов линейно-независима, то любая часть из этих векторов будет тоже линейно-независимой.

Размерность и базис линейного пространства. Пусть система n векторов линейно-независима, а любая система n+1 векторов – линейно-зависима, тогда число n называют размерностью пространства. dimV=n

Система этих n линейно-независимых векторов называется базисом линейного пространства. Рассмотрим систему n+1 векторов.

Такое представление называется разложение

по базису, а числа
называют координатами вектора.

Разложение любого вектора в выбранном базисе - единственно.

11. Матрица перехода от базиса к базису. Преобразование координат вектора при переходе к новому базису.

n – мерное пространство.

Vn – базис, состоящий из n векторов.

В пространстве есть базисы

Введем матрицу перехода от

к
.

12. Евклидово пространство. Длина вектора. Угол между векторами.

Рассмотрим линейное пространство V, в котором уже есть 2 операции (сложение и умножение). В этом пространстве введем еще одну операцию. Она будет удовлетворять следующим аксиомам.

1.

2.

3.

4.

Указанная операция называется скалярным произведением векторов. N – мерное линейное пространство с введенной операцией скалярного произведения, называется Евклидовым пространством.

Длиной вектора называется арифметическое значение квадратного корня и скалярного квадрата.

Длина вектора удовлетворяет следующим условиям:

1.

, если

2.

3.

- неравенство Коши-Буня

4.

- неравенство треугольника

13.Скалярное произведение векторов и его свойства.

Скалярным произведением двух ненулевых векторов называется число, равное произведению этих векторов на косинус угла между ними.

1.

2.

3.

4.

14. Векторное произведение векторов и его свойства.

Три некомпланарных вектора образуют правую тройку если с конца третьего поворот от первого вектора ко второму совершается против часовой стрелки. Если по часовой – то левую.

Векторным произведением вектора

на вектор
называется вектор
, который:

1. Перпендикулярен векторам

и
.

2. Имеет длину, численно равную площади параллелограмма, образованного на векторах

и
.

, где

3. Векторы

,
и
образуют правую тройку векторов.

Свойства:

1.

2.

3.

4.

15. Смешанное произведение векторов и его свойства.

Смешанное произведение записывают в виде:

.

Смысл смешенного произведения: сначала два вектора векторно перемножают, а затем полученный скалярно перемножают с третьим вектором. Смешанное произведение представляет собой число – число. Результат смешанного произведения – объем параллелепипеда, образованного векторами.

Свойства.

1. Смешанное произведение не меняется при циклической перестановке сомножителей:

2. Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.

3. Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.

4. Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.

Три вектора называются компланарными, если результат смешанного произведения равен нулю.

16. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.

Рассмотрим линейное пространство V, в котором каждому элементу x, в силу некоторого закона поставлен элемент этого же пространства.

- прообраз

- образ

Каждому прообразу соответствует единственный образ.

Каждый образ имеет единственный прообраз.

Линейное преобразование пространства, при котором существует взаимнооднозначные соответствия.

Блективное преобразование –

называется линейным, если выполняются 2 условия.

1.

2.

Рассмотрим n-мерное линейное пространство

Для того, чтобы задать линейные преобразования в этом пространстве достаточно задать это преобразование для базисных векторов.