Если среди n векторов какие-то kлинейно-зависимы, то вся система векторов является линейно-зависимой.
Если система n векторов линейно-независима, то любая часть из этих векторов будет тоже линейно-независимой.
Размерность и базис линейного пространства. Пусть система n векторов линейно-независима, а любая система n+1 векторов – линейно-зависима, тогда число n называют размерностью пространства. dimV=n
Система этих n линейно-независимых векторов называется базисом линейного пространства. Рассмотрим систему n+1 векторов.
Такое представление называется разложение
по базису, а числа называют координатами вектора.Разложение любого вектора в выбранном базисе - единственно.
11. Матрица перехода от базиса к базису. Преобразование координат вектора при переходе к новому базису.
n – мерное пространство.
Vn – базис, состоящий из n векторов.
В пространстве есть базисы
Введем матрицу перехода от
к .12. Евклидово пространство. Длина вектора. Угол между векторами.
Рассмотрим линейное пространство V, в котором уже есть 2 операции (сложение и умножение). В этом пространстве введем еще одну операцию. Она будет удовлетворять следующим аксиомам.
1.
2.
3.
4.
Указанная операция называется скалярным произведением векторов. N – мерное линейное пространство с введенной операцией скалярного произведения, называется Евклидовым пространством.
Длиной вектора называется арифметическое значение квадратного корня и скалярного квадрата.
Длина вектора удовлетворяет следующим условиям:
1.
, если2.
3.
- неравенство Коши-Буня4.
- неравенство треугольника13.Скалярное произведение векторов и его свойства.
Скалярным произведением двух ненулевых векторов называется число, равное произведению этих векторов на косинус угла между ними.
1.
2.
3.
4.
14. Векторное произведение векторов и его свойства.
Три некомпланарных вектора образуют правую тройку если с конца третьего поворот от первого вектора ко второму совершается против часовой стрелки. Если по часовой – то левую.
Векторным произведением вектора
на вектор называется вектор , который:1. Перпендикулярен векторам
и .2. Имеет длину, численно равную площади параллелограмма, образованного на векторах
и . , где3. Векторы
, и образуют правую тройку векторов.Свойства:
1.
2.
3.
4.
15. Смешанное произведение векторов и его свойства.
Смешанное произведение записывают в виде:
.Смысл смешенного произведения: сначала два вектора векторно перемножают, а затем полученный скалярно перемножают с третьим вектором. Смешанное произведение представляет собой число – число. Результат смешанного произведения – объем параллелепипеда, образованного векторами.
Свойства.
1. Смешанное произведение не меняется при циклической перестановке сомножителей:
2. Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
3. Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
4. Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
Три вектора называются компланарными, если результат смешанного произведения равен нулю.
16. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.
Рассмотрим линейное пространство V, в котором каждому элементу x, в силу некоторого закона поставлен элемент этого же пространства.
- прообраз - образКаждому прообразу соответствует единственный образ.
Каждый образ имеет единственный прообраз.
Линейное преобразование пространства, при котором существует взаимнооднозначные соответствия.
Блективное преобразование –
называется линейным, если выполняются 2 условия.1.
2.
Рассмотрим n-мерное линейное пространство
Для того, чтобы задать линейные преобразования в этом пространстве достаточно задать это преобразование для базисных векторов.