Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z.
Следовательно
27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид.
Эллипсоид.
Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении, определяется двумя уравнениями:
Если |h|>c, c>0, то
Если |h|=c, т.е. h=±c, то
Если |h|<c, то уравнения можно переписать в виде:
Линия пересечения есть эллипс с полуосями.
Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все они различны, то эллипсоид называется трехосным. Если какие-либо две полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело называется сферой x2+y2+z2=R2
Однополостный гиперболоид.
Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения которой имеют вид.
Полуоси достигают своего наименьшего значения при h=0, a1=a, b1=b. При возрастании |h| полуоси будут увеличиваться.
Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение которой x=0. Эта линия пересечения описывается уравнениями:
Поверхность имеет форму бесконечно расширяющейся трубки и называется однополостным гиперболоидом.
Двуполостный гиперболоид.
Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями
Если |h|<c, то плоскости z=h не пересекаются.
Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в точках (0;0;с) и (0;0;-с).
Если |h|>c, то уравнения можно переписать в виде:
Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.
У обеих гипербол действительной осью является ось oz. Метод сечения позволяет изобразить поверхность, состоящую из двух полостей, имеющих форму двух неограниченных чаш. Поверхность называется двуполостным гиперболоидом.
28. Поверхности 2-го порядка. Параболоиды.
Эллиптический.
При пересечении поверхности координатами плоскостями Oxzи Oyzполучается соответственно параболы
Гиперболический.
Рассечем поверхность плоскостями z=h. Получим кривую
которая при всех h≠0 является гиперболой. При h>0 ее действительные оси параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия пересечения распадается на пару пересекающихся прямых:
При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h), будут получаться параболы, ветви которых направлены вверх.
29. Поверхности 2-го порядка. Конусы и цилиндры.
Конус.
Поверхность, образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L(не проходящую через Р) называется конической поверхностью или конусом. При этом линия Lназывается направляющей конуса, точка Р – ее вершиной, а прямая, описывающая поверхность, называется образующей.
Цилиндр.
Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую К, называется цилиндром. При этом кривая К называется направляющей цилиндра, а прямая L – образующая.
30. Исследование кривой второго порядка по ее уравнению без произведения координат.
Уравнение вида Ax2+Cy2+2Dx+2Ey+F=0 всегда определяет либо окружность (при А=С), либо эллипс (при А*С>0), либо гиперболу (при А*С<0), либо параболу (при А*С=0), при этом возможны случаи вырождения: для эллипса (окружности) – в точку или мнимый эллипс (окружность), для гиперболы – в пару пересекающихся прямых, для параболы – в пару параллельных прямых.
Общее уравнение второй степени с двумя неизвестными: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0
Коэффициент В с произведением координат преобразовывает уравнение путем поворота координатных осей.
31. Определение предела числовой функции. Односторонние пределы. Свойства пределов.
Число А называется пределом функции y=f(x) в точке х0, если для любой последовательности допустимых значений аргумента xn, n€N (xn≠x0), сходящейся к х0
(т.е.
Односторонние пределы.
Считается, что х стремится к х0 любым способом: оставаясь меньшим, чем х0 (слева от х0), большим, чем х0 (справа от х0), или колеблясь около точки х0.
Число А1 называется пределом функции y=f(x) слева в точке х0, если для любого ε<0 существует число σ=σ(ε)>0 такое, что при х€(x0-σ;x0), выполняется неравенство |f(x)-A1|<ε
Пределом функции справа называется
Свойства пределов.
1) если предел
ε – сколь угодно малое число
|f(x)-a|=α; f(x)=a+ α
2) сумма конечного числа б.м. чисел есть б.м. число
3) предел произведения равен произведению пределов
4) константы можно выносить за знак предела
5)
1 замечательный предел.
Возьмем круг радиуса 1, обозначим
радианную меру угла MOB через Х.
Пусть 0 < X < π/2. На рисунке |АМ| = sinx, дуга МВ численно равна центральному углу Х, |BC| = tgx. Тогда
Разделим все на
Т.к.
2 замечательный предел.
Пусть х→∞. Каждое значение х заключено между двумя положительными целыми числами:
Если x→∞, то n→∞, тогда
По признаку о существовании пределов:
33. Непрерывные функции и их свойства. Точка разрыва функций и их классификация.