Смекни!
smekni.com

Фундаментальный предел скорости гравитации и его измерение (стр. 2 из 4)

Эффект гравитационной линзы

Электромагнитные сигналы распространяются в пространстве-времени по наикратчайшему пути, который называется геодезической линией. В отсутствии гравитационного поля пространство-время плоское и геодезические линии - это прямые. Однако гравитационное поле изменяет структуру пространства-времени и искривляет его. Вследствие этого геодезические линии, по которым движется свет, тоже искривляются. Если источник гравитационного поля - массивное тело, то лучи света, распространяющиеся в поле данного тела, изгибаются в его сторону. Этот эффект, известный под названием гравитационной линзы, был предсказан Эйнштейном в 1915 г. Ньютоновская теория тоже предсказывает аналогичный эффект, но величина отклонения лучей света в ньютоновской теории гравитации в 2 раза меньше, чем в ОТО. Так происходит потому, что ньютоновская теория не учитывает кривизны трехмерного пространства, создаваемого полем гравитационной линзы, т.е. того тела, которое отклоняет лучи света. Прецизионное измерение световых геодезических линий позволяет полностью определить структуру гравитационного поля и его характеристики, включая предельную скорость гравитации. Значимый вклад в развитие теории гравитационных линз был сделан российскими физиками-теоретиками М.В. Сажиным (ГАИШ МГУ) и А.Ф. Захаровым (ИТЭФ) (Земля и Вселенная, 1993, № 2).

Предсказание Эйнштейна экспериментально проверил в 1919 г. английский астроном А. Эддингтон (1882 - 1944), который организовал специальную экспедицию для измерения эффекта отклонения лучей света в гравитационном поле Солнца. Положительный результат эксперимента Эддингтона дал начало триумфальному шествию общей теории относительности Эйнштейна по всему миру. Однако не следует забывать, что отклонение лучей света гравитационным полем Эйнштейн рассчитал для случая статического гравитационного поля, которое является очень хорошей аппроксимацией применительно к Солнечной системе. Действительно, Солнце, как уже говорилось, практически покоится в ее центре масс, и все релятивистские поправки, вызываемые его движением, пренебрежимо малы. Как сильно изменится эффект отклонения лучей света, если гравитационная линза движется? Приведет ли движение линзы к появлению принципиально новых физических эффектов?

Идея эксперимента

Общая теория относительности позволяет рассчитать гравитационное поле движущейся гравитационной линзы двумя различными методами. Первый метод заключается в решении статических уравнений Эйнштейна в неподвижной системе координат, по отношению к которой линза покоится, с последующим применением преобразования Лоренца для перехода от статического решения к движущейся системе координат. Второй метод заключается в применении нестационарных уравнений Эйнштейна для нахождения гравитационного поля линзы непосредственно в движущейся системе координат. В первом случае уравнения Эйнштейна не содержат производных по времени от гравитационных потенциалов (они равны нулю в силу статичности поля), а во втором - содержат. В каждую производную по времени в теории относительности входит фундаментальная константа, численно равная скорости света. Однако раз мы имеем дело с уравнениями гравитационного поля (которые не связаны со светом), данная константа должна быть физически интерпретирована как скорость распространения гравитационного поля (скорость гравитации). Решая уравнения Эйнштейна в равномерно движущейся системе координат, мы получаем запаздывающее гравитационное поле, где запаздывание определяется величиной скорости гравитации (но не света, так как уравнения Эйнштейна относятся только к гравитационному полю!). Интересно, что свободные гравитационные волны при этом отсутствуют, а скорость гравитации появляется в этом решении в качестве константы, определяющей величину производных по времени от гравитационного поля. Эти производные могут быть переписаны как функции запаздывающего времени, зависящего от скорости гравитации. Запаздывающее время определяет характеристики уравнений Эйнштейна, то есть те изотропные направления в пространстве, вдоль которых распространялись бы гравитационные волны, если бы они реально присутствовали. Лоренцевское преобразование характеристик уравнений Эйнштейна от неподвижной к движущейся системе координат получила название аберрации гравитации по аналогии с аберрацией света, которое есть следствие лоренцевского преобразования уравнений Максвелла.

Предположим, что мы решили уравнения Эйнштейна для гравитационной линзы в неподвижной системе координат и, применив преобразование Лоренца, перешли к движущейся. Если бы скорость гравитации в уравнениях Эйнштейна, определяющая величину запаздывания гравитационного поля, не совпадала по величине с предельной скоростью преобразований Лоренца, то поле движущейся гравитационной линзы, полученное путем преобразования Лоренца, отличалось бы от поля, полученного путем решения уравнений Эйнштейна непосредственно в движущейся системе координат. Величина рассогласования двух полей определяется разностью между скоростью гравитации и света. Для измерения этого возможного рассогласования между двумя скоростями необходимо исследовать поведение световых геодезических, используемых как реперные линии, по отношению к которым измеряется аберрация характеристик гравитационного поля. При этом максимальная величина рассогласования определяется в общей теории относительности амплитудой первых производных по времени от гравитационных потенциалов.

Суть нашего эксперимента заключалась в измерении запаздывания (аберрации) гравитационного поля, посредством наблюдения релятивистского отклонения радиоволн, идущих от квазара, Юпитером, который рассматривался как движущаяся гравитационная линза.

Влияние производных по времени на отклонение лучей света проявляется в том, что Юпитер отклоняет лучи света своим гравитационным полем не мгновенно, а с запаздыванием, обусловленным конечностью скорости распространения гравитационного поля от Юпитера до световой частицы (фотона). Такое запаздывание обусловлено волновой природой уравнений Эйнштейна и полностью совместимо с преобразованием Лоренца для них. Это преобразование - другой математический способ, подтверждающий конечность скорости распространения гравитационных полей (численно равной скорости света, согласно ОТО). Измеряя величину производных по времени в уравнениях световых геодезических, мы устанавливаем предел на величину скорости гравитации по отношению к скорости света и подтверждаем, что уравнения Эйнштейна должны сохранять свою форму (инвариантность) при применении преобразования Лоренца.

Рис.1 - Смещение видимого положения квазара по кругу небольшого углового диаметра (кругу Эйнштейна), вследствие гравитационного отклонения лучей света, идущих от квазара, движущимся Юпитером. Предельная скорость гравитации полагается равной бесконечности.
Рис.2 - Малое смещение и вращение круга Эйнштейна относительно невозмущенного положения квазара, вследствие аберрации гравитационного поля движущегося Юпитера. Каждая точка смещенного круга получена из точки на круге Эйнштейна путем трансляции на малое расстояние в картинной плоскости неба. Величина трансляции состоит из двух слагаемых, одна из которых направлена в сторону движения Юпитера, а другая по линии, соединяющей Юпитер и невозмущенное положение квазара. Это явление также может быть интерпретировано как "увлечение" лучей света гравитационным полем Юпитера. Предельная скорость гравитации полагается равной скорости света.

Юпитер, проходя на небесной сфере "вблизи" квазара, отклоняет лучи света, идущие от него, смещая видимое положение данного космического радиоисточника в другую точку неба. Такое смещение в первом (статическом) приближении предсказано Эйнштейном. Оно обратно пропорционально угловому расстоянию между Юпитером и квазаром и не зависит от скорости гравитации. По мере движения Юпитера по орбите видимое положение квазара на небе смещается по кругу очень небольшого углового размера. Назовем его кругом Эйнштейна. Уравнения Эйнштейна в совокупности с уравнениями световых геодезических показывают, что Юпитер отклоняет лучи света с запаздыванием, учитывающим тот факт, что гравитационное влияние на луч света не может происходить мгновенно, а требует времени, за которое гравитационное поле проходит расстояние от источника поля до световой частицы - фотона. Это запаздывание приводит к изменению картины смещения видимого положения квазара на небе. Геометрически это соответствует малому вращению и смещению круга Эйнштейна относительно астрометрического положения квазара, невозмущенного гравитационным полем Юпитера. Величина этого смещения обратно пропорциональна квадрату углового расстояния между Юпитером и квазаром, умноженному на отношение орбитальной скорости Юпитера к скорости гравитации. Таким образом, измерение величины смещения круга Эйнштейна гравитационным полем движущегося Юпитера позволяет определить скорость гравитации, так как остальные наблюдаемые параметры хорошо известны. Особо подчеркнем, что никаких свободных гравитационных волн, излучаемых Юпитером, мы не детектировали - они существуют, но их эффект слишком мал и не мог быть измерен, о чем мы непосредственно и объявили на пресс-конференции, данной нами в Сиэтле в январе 2003 г. К сожалению, некоторые физики, как, например, Клиффорд Вилл (Университет Вашингтона, г. Сент Луис), не присутствовавшие на пресс-конференции, неправильно интерпретировали результаты эксперимента, полагая, что мы говорим об эффекте, производимом гравитационными волнами.