Смекни!
smekni.com

О теории вероятностей (стр. 2 из 9)

Рис. Функция вероятности нормального распределения

8. Интегральная теорема Муавра-Лапласа.

При больших значениях n , для вычисления вероятности того, что произойдет от к1, до к2 событий по схеме

Бернулли, используется интегральная формула Муавра-Лапласа

Pn(k1≤k≤k2)=Ф(x2)- Ф(x1),

где x1=(k1-np) /(√npq), x2=(k2-np)/(√npq), Ф(x) – функция Лапласа. (рис.7)

Ф(х) имеет следующие свойства:

1. Ф(-х)= -Ф(х) - функция нечетная, поэтому достаточно изучать её для неотрицательных значений х

2. Функция Ф(х) возрастает на всей числовой оси;

Рис. Функция Лапласа

3. При х≥5, Ф(х)→1/2 (y = 0,5 горизонтальная асимптота при х>0), поэтому функция представлена в виде таблицы Для 0≤х≤5 (прил.1).

4. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях не более чем на некоторое число ε>0


9. Формула Пуассона

Если npq<10 и р<0,1, то

где λ=np.

10. Случайные величины и их виды

Случайной величиной (СВ) называют такую величину, которая в результате опыта может принимать те или иные значения, причем до опыта мы не можем сказать какое именно значение она примет. (Более точно, СВ - это действительная функция, определенная на пространстве элементарных событий Q). Случайные величины обозначаются последними буквами латинского алфавита - X,Y,Z. Случайные величины могут быть трех типов: - дискретные, - непрерывные, - смешанные (дискретно-непрерывные). Дискретная случайная величина (ДСВ) может принимать конечное или бесконечное счетное число значений. Непрерывная случайная величина (НСВ) в отличие от ДСВ принимает бесконечное несчетное число значений. Например мишень имеет форму круга радиуса R. По этой мишени произвели выстрел с обязательным попаданием. Обозначим через Y расстояние от центра мишени до точки попадания, Ye [0; R]. Y - непрерывная случайная величина, так как она принимает бесконечное несчетное число значений.

Пусть X - дискретная случайная величина, которая принимает значения х1, х2, ...,хn,... с некоторой вероятностью рi, где i = 1, 2, ..., n,... Тогда можно говорить о вероятности того, что случайная величина X приняла значение хi: рi=Р(Х=хi).

ДСВ может также представляться в виде многоугольника распределения – фигуры, состоящей из точек, соединенных отрезками. Над СВ устанавливаются операции сложения и умножения.

Суммой двух СВ X и Y наз-ся случайная величина, которая получается в рез-те сложения всех значений случайной величины X и всех значений СВ Y, соответствующие вероятности перемножаются. Произведением двух СВ X и Y наз-ся СВ, которая получается в рез-те перемножения всех значений СВ X и всех значений СВ Y, соответствующие вероятности перемножаются.

11. Математическое ожидание

Математическим ожиданием М(Х) ДСВ X называется среднее значение случайной величины:

Или иначе, М(Х) - это сумма парных произведений случайной величины на соответствующую вероятность:

Мода Мо(Х) распределения - это значение СВ, имеющее наиболее вероятное значение.

Медиана Ме(Х) - это значение случайной величины, которое делит таблицу распределения на две части таким образом, что вероятность попадания в одну из них равна 0,5. Медиана обычно не определяется для ДСВ.

Свойства математического ожидания:

1) М(С)=С, где С=const;

2)М(СХ) = СМ(Х);

3) M(X±Y) = М(Х) ± M(Y);

4) Если случайные величины X и Y, независимы, то M(XY) = M(X)*M(Y).

Для биномиального распределения М(Х)=nр;

для геометрического распределения М(Х)= 1/р;

для распределения Пуассона М(Х)=λ;

для гипергеометрического распределения М(Х) = n(M/N).

12. Дисперсия ДСВ и ее свойства

Математическое ожидание квадрата отклонения СВ от ее математического ожидания:

D(X) = M(x-M(X)2) = =(х1-М(Х))2р1+(х2-М(Х))2р2+....+(xn-М(Х))2рn .(2.3.2)

Свойства дисперсии:

1) D(С) = 0, где С=соnst;

2) D(CX)=C2D(X);

3) D(X)=M(X2)-(M(X))2, где М(Х2) = х21 р1 + x22 p2 + ...+ х2n рn;

4) Если СВ X и Y независимы, то D(X±Y)=D(X) + D(Y);

5) D(OX)=D(X);

6) Для любых СВ X и Y, D(X±Y)=D(X)+D(Y)±2cov(X,Y), где cov(X,Y)=M((X-mx)(Y-m )) - ковариация случайных величин X и Y (М(Х)= mx, M(Y)= m).

Дисперсия характеризует средний квадрат отклонения ДСВ, поэтому на практике часто используют в качестве характеристики разброса среднее квадратическое отклонение σ(Х)= √D(X) , которое имеет ту же размерность, что и СВ X.


Для биноминального закона

D(X)=npq, σ(X)=√npq;

для геометрического закона D(X)= q/p2;

для гипергеометрического D(X)=n(M/N)(1-M/N)(N-n)/(N-1);

для распределения Пуассона D(X)=λ.

Только для распределения Пуассона M(X)=D(X)= λ.

13. Показательное распределение.

НСВ X, принимающая неотрицательные значения, имеет показательное распределение, если ее дифференциальная функция имеет вид

где Я =const, Я >0.

Интегральная функция показательного закона с параметром λ:

Рис. Показательный закон

Если СВ X распределена по показательному закону, то:

1. Математическое ожидание М(Х) = 1/λ ;

2. Дисперсия D(X)=1/λ2, среднее квадратическое отклонение

σ(X)=√D=1/λ.

3. Вероятность попадания СВ X в заданный интервал определяется по формуле

Р(а≤х<b) = е-λаb.

Замечание. Показательное распределение играет большую роль в теории массового обслуживания (ТМО), теории надежности. В ТМО параметр X - среднее число событий, приходящихся на единицу времени. При определенных условиях число событий, произошедших за промежуток времени т, распределено по закону Пуассона с математическим ожиданием а =λτ. Длина промежутка t, между произвольными двумя соседними событиями, подчиняется показательному закону: P(T<t)=F(t)=l-eλt.

14. Закон распределения дискретной случайной величины

1. Биномиальный закон распределения. Случайная величина X принимает значения 0, 1, 2, 3, 4, 5,...,n, с вероятностью, определяемой по формуле Бернулли:

2. Закон распределения Пуассона. Случайная величина X принимает бесконечное счетное число значений: 0, 1, 2, 3, 4, 5,..., к,... , с вероятностью, определяющейся по формуле Пуассона:


где Х>0 - параметр распределения Пуассона.

При n→∞ и р→0 биномиальный закон приближается к закону распределения Пуассона, где λ, = np.

Геометрический закон распределения. Пусть Р(А)=р - вероятность наступления события А в каждом опыте, соответственно, q=l-p - вероятность не наступления события А.

Вероятность наступления события А в к-ом опыте определяется по формуле:

P(X=k)=p-qk-1. (2.2.2.)

Случайная величина X, распределенная по геометрическому закону принимает значения 1, 2,...,к,... , с вероятностью, определяемой по формуле (2.2.2):

4. Гипергеометрический закон распределения. Пусть в урне N-шаров, из них М белых, а остальные (N - М) черные. Найдем вероятность того, что из извлеченных n шаров m белых и (n-m) черных.

N= М + (N-M); n = m + (n-m);


СmM - число способов выбора m белых шаров из М;

Сn-mN-M- число способов выбора (n-m) черных шаров из (N-M).

По правилу произведения, число всех возможных наборов из m белых и (n-m) черных равно СmM Сn-mN-M;

CnN- общее число способов выбора из N шаров n.

Отсюда, по формуле классического определения вероятности, P(A)= (СmM Сn-mN-M)/ CnN

Ограничения на параметры: М≤N, m≤n; m = m0, m0 +1, m0+2,..., min(M,n), где m0=max{0, n-(N-M)}. Случайная величина Х, распределенная по гипергеометрическому закону распределения (при т=0,1,2,3,...,М), имеет вид:

Гипергеометрический закон определяется тремя параметрами N, М, n. При n<0,1N этот закон стремится к биномиальному.

Замечание.

1. В теории вероятностей различают две основные схемы: выбора элементов с возвращением каждый раз обратно и выбора без возвращения, которые описываются соответственно биномиальным и гипергеометрическим законами.

2. Геометрический закон описывает схему повторения опытов (в каждом из которых может наступить или не наступить событие А: Р(А)=р, q=l-p), до первого появления события А, то есть фактически это отрицательное биномиальное распределение при m=1.

16. Одинаково распределённые, взаимонезависимые дискретные случайные величины

СВ называют одинаково распределенными, если они имеют одинаковые законы распределения. Поэтому у них совпадают числовые характеристики: математическое ожидание, дисперсия, среднее квадратическое отклонение.