Содержание
Двойные интегралы
Определение определенного интеграла
Правило вычисления двойного интеграла.
Вычисление объемов тел с помощью двойного интеграла
Вычисление площадей поверхностей фигур с помощью двойного интеграла.
Тройные интегралы
Вычисление объемов тел с помощью тройного интеграла.
Несобственные интегралы.
Дифференциальные уравнения.
1. Дифференциальные уравнения первого порядка с разделяющимися переменными
2. Однородные дифференциальные уравнения первого порядка
3. Линейные дифференциальные уравнения
4. Уравнения Бернулли
Дифференциальные уравнения второго порядка.
Три случая понижения порядка.
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Комплексные числа
Геометрическое изображение комплексных чисел
Действия над комплексными числами.
Произведение.
Частное.
Возведение в степень.
Извлечение корня
Ряды.
Числовые ряды.
Свойства числовых рядов.
Знакоположительные ряды
Признаки сходимости и расходимости знакоположительных рядов.
Знакопеременные и знакочередующиеся ряды.
Определение определенного интеграла
- интегральная сумма.Геометрический смысл ОИ: равен площади криволинейной трапеции.
Аналогично ОИ выводится и двойной интеграл.
Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.
Интегральной суммой для этой функции называется сумма
Она распространяется на те значения i и к, для которых точки (xi,yk) принадлежат области S.
Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.
Правило вычисления двойного интеграла
Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.
1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми
.Для такой области двойной интеграл вычисляется через повторный по формуле:
Сначала вычисляется внутренний интеграл:
При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.
2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=dи кривыми
.Для такой области двойной интеграл вычисляется через повторный по формуле:
Сначала вычисляется внутренний интеграл, затем внешний.
При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.
3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.
Вычисление объемов тел с помощью двойного интеграла
Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:
Вычисление площадей поверхностей фигур с помощью двойного интеграла
Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:
- площадь поверхности.ТРОЙНЫЕ ИНТЕГРАЛЫ
Определяется аналогично двойному интегралу.
Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.
Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.
Вычисление объемов тел с помощью тройного интеграла
Объем тела вычисляется по формуле:
Это интегралы: - с бесконечными пределами; - от неограниченной функции.
Первый вид
Несобственные интегралы с бесконечными пределами имеют вид:
; ;Несобственные интегралы от функции в пределах от (а) до (
) определяются равенством.1.
; 2. ; 3.Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.
Второй вид
Несобственные интегралы от неограниченной функции имеют вид:
, где существует точка “с” (точка разрыва) такая, что ; , т.е. (в частности c=a; c=b).Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при
или , то полагаем:Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .
Символически дифференциальное уравнение выглядит:
F(x,y,y’,y’’…,y(n))=0 или
.2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:
Пример.
F(x,y,y’)=0- дифференциальное уравнение первого порядка.
F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.
3. Решением дифференциального уравнения называется всякая функция
, которая при подстановке в уравнение, обращает его в верное тождество.Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.
Пример.
Дифференциальное уравнение первого порядка.
Общее и частное решения.
F(x,y,y’)=0
Это уравнение можно привести к виду y’=f(x,y).
Интегрируем уравнение.
После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.
Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).
Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.
Частное решение.
Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б).
; в). у(х0)=у0.Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.