SΔABC =
( 1 )Аналогічно: SΔACD=
( 2 )SΔBCD=
( 3 )За побудовою SΔABC= SΔACD+ SΔBCD. ( 4 )
З рівностей ( 1 ), ( 2 ), ( 3 ), ( 4 ) випливає:
тобто
Рис.3 Рис.4Доведення 4. Впишемо в трикутник АВС коло ( О, r ) ( Рис.4 ). Тоді:
SΔABC= SΔOAC + SΔOAB =
Чотирикутник OKCL – квадрат з стороною r. За властивістю дотичних, проведених з точок А та В до кола, маємо: AH = AK =
, BH = BL = .Тоді
AB = AH + HB =
З іншого боку
SΔABC =
.Таким чином,
Доведення 5
Виконуємо побудови, які показано на рисунку 5 а), 5 б).
Рис.5,а
Рис.5,б
CDMN, TQRE – квадрати зі стороною
. Тоді SCDMN = STQRE.За побудовою маємо:
SCDMN= SABLK + 4SΔABC,
STQRE = SPQBC+ SACFE + 4SΔABC.
Порівнюючи ці рівності, дістанемо:
SABLK+ 4SΔABC= SPQBC+ SACFE + 4SΔABC, або
SABLK = SPQBC+ SACFE, тобто
Доведення 6
Побудуємо квадрат CDMN з стороною a+b( Рис.6)
Рис. 6
Тоді ΔАСВ = ΔBDK = ΔKLM = ΔLNA ( за двома катетами ) , звідки
AB = BK = KL = LA = c.
Отже, чотирикутник ABKL – ромб.
Оскільки
АВК = 90°, то ABKL – квадрат. Маємо:Порівнюючи останні рівності, дістанемо:
Доведення 7
На сторонах прямокутного трикутника АВС побудуємо квадрати АВКМ, АDЕС, ВСFR. (Pис. 7). Трикутники ЕСF, КLМ і АСВ рівні між собою. АDRВ = EDRF як симетричні відносно прямої DR фігури; ACLM = КLСВ як центрально-симетричні фігури відносно центра квадрата АВКМ; АDRB=АСLМ як відповідні фігури при повороті навколо центра А на кут 90°.
Враховуючи одержані три рівності, маємо:
ADEFRB = ACBKLM, але
SADEFRB= SADEC+ 2SΔABC + SBCFR, SACBKLM = SABKM + 2SΔABC.
Отже, SADEC+ SBCFR = SABKM, тобто
Рис.7Рис.8
Доведення 8
Прямокутний трикутник АСВ з прямим кутом С повернемо навколо точки С на 90° так, щоб він зайняв положення А´СВ´ ( Рис. 8 ).Продовжимо гіпотенузу А´В´ до перетину з АВ у точці D. Відрізок В´D буде висотою трикутника В´АВ.
Розглянемо тепер чотирикутник А´АВ´В. Його можна розкласти на два рівнобедрені трикутники СА´А і СВ´В. Маємо:
ЫΔСФ´Ф =
б ЫΔСИ´И= юТаким чином
ЫФ´ФИ´И= ЫΔСФ´Ф + ЫΔСИ´И=
юТрикутники АА´В´ і ВА´В´ мають спільну основу В´А´ і висоти AD і BD відповідно. Тому
ЫФ´ФИ´И= ЫΔАФ´В´ + ЫΔВА´И=
юПорівнявши два вирази для площі чотирикутника А´АВ´В, одержимо:
, тобто1.2Теорема Піфагора та цілочислові прямокутні трикутники
Співвідношення між сторонами прямокутного трикутника, яке подається в підручниках математики та інших джерелах під назвою теореми Піфагора, було відоме з давніх часів. Так, клинописі пам'ятки Вавілона свідчать про те, що за 2-2,5 тисячі років до нашої ери там уже користувалися названим співвідношенням для обчислень. Було відоме воно і стародавнім єгиптянам (за 2300 років до н.е.) ,про що свідчить папірус Берлінського музею. Чому ж ця закономірність названа ім'ям Піфагора, який жив у VIcт. до н.е., тобто значно пізніше?
Піфагор, про життя якого є лише відомості, переписані легендами, народився на о. Самос. У молоді роки він багато подорожував і цілком імовірно, що, відвідавши країни Стародавнього Сходу, познайомився з відомою вже там закономірністю про співвідношення між сторонами прямокутного трикутника. Повернувшись на батьківщину (в Грецію) та оселившись у м. Кротоні, Піфагор заснував філософську школу і серйозно зайнявся систематизацією та узагальненням математичних знань. Піфагор систематизував здобуті фрагментарні відомості про прямокутний трикутник, дав їм логічне обґрунтування, зробивши їх надбанням своїх співвітчизників.
Першопрохідці помітили, що рівність a2+b2=c2 (1) справджується при натуральних значеннях довжин катетів а і b та гіпотенузи с, бо інших чисел вони не знали.
З’ясуємо насамперед, чи є такі три послідовності натуральних чисел, що задовольняють рівність (1). Якщо є, то скільки таких трійок чисел?
Нехай a=n -1; b=n ; c=n+1. Тоді (n -1)2+n2=(n+1)2 , звідки n2-4n=0; n1=0; n2=4. Умову задачі задовольняє n=4.
Отже, маємо трійку чисел 3,4,5, для яких 32+42=5 2.Оскільки інших розв’язків рівняння не має, то існує лише одна така трійка чисел.
Прямокутний трикутник зі сторонами 3, 4 і 5 був відомий стародавнім єгиптянам. Ним вони користувалися, будуючи прямі кути під час землевимірювальних робіт. Поділивши вірьовку на 12 рівних частин, закріплювали її кілками в поділках, які від одного кінця відділяли 3 відрізки, а від другого – 5. Натягуючи вільні кінці вірьовки та суміщаючи їх, діставали прямокутний трикутник з прямим кутом між відрізками 3 і 4 одиниці. Людей, які займалися цією справою, називали гарпедонаптами (натягувачі вірьовок), а прямокутний трикутник зі сторонами 3, 4, і 5 дістав назву єгипетського.
Назвемо прямокутні трикутники довжини сторін яких виражаються цілими числами, цілочисловими. Зрозуміло, що трикутники зі сторонами 3k, 4ki 5k прямокутні цілочислові, бо (3k)2+(4k)2=(5k)2 ↔ 32+42=5 2. Таких трикутників безліч.
Чи існують цілочислові прямокутні трикутники, крім єгипетського, довжини сторін яких – три числа, що мають найбільшим спільним дільником число 1? Шукатимемо такі трикутники, тобто такі трійки натуральних чисел, які задовольнятимуть зазначену вище умову. Виходячи з умови, вони не можуть бути всі парними, але не можуть бути й не парними,бо , якщо a і b непарні, то с парне. (Зазначимо тут, що коли, наприклад, a парне, то a2 кратне 4, бо якщо a=2п ,то a2=4п2.Якщо a непарне, тобто a=2п+1, то a2=4п2+4п+1=4п1+1 – непарне).
Взагалі, якщо будь-які два числа з трійки натуральних чисел a, b і c ,що задовольняють a2+b2=c2 (такі числа називають піфагоровими), мають спільний дільник відмінний від 1, то він буде також дільником і третього числа. Отже, будь-яка пара чисел з шуканих трійок є взаємно-простими числами. Нехай aнепарне і bпарне, тоді c також непарне.
Маємо :
a2+b2=c2 ↔b2=c2- a2↔ b2=(c-a)(c+a).(2)
Числа (c-a) і (c+a) парні, тому тому
і цілі ; b2 кратне 4, тому ціле .З рівності ( 2 ) дістанемо: = * (3).