Смекни!
smekni.com

Аналогія: теорема Піфагора на площині і в просторі (стр. 6 из 6)

Оскільки

,

то одержимо:

Тоді

Таким чином,

,

звідки

Враховуючи, що

,

остаточно одержимо

Доведення 9.У вибраній системі координат

координати вершин тетраедра ОАВС ( Рис.2.8 ) набудуть вигляду:
.

Об’єм тетраедра можна обчислити за формулою:

,

де

(
) – координати вершин тетраедра.

Застосуємо цю формулу

. (1)

З іншого боку

(2),

де ОН – висота тетраедра (Рис. 2.6).

Висоту ОН знайдемо як відстань від точки О до площини трикутника АВС. Для цього складемо рівняння площини (АВС) "у відрізках на осях":

або

Тоді

. (3)

З (1), (2), (3) слідує

,

звідки

або

.

Доведення 10. Використаємо (рис.2.8) і позначення на ньому. Висоту ОО1 обчислимо як відстань між точками О і О1, для цього складемо рівняння прямої ОО1. Рівняння площини (АВС) має вигляд

(див. розв’язання 9),

де

— вектор нормалі.

Оскільки

, то
(як два перпендикуляри до площини).

Таким чином, вектор

— напрямний вектор прямої ОО1. Канонічні рівняння прямої ОО1 набудуть вигляду:

,

звідси одержимо параметричні рівняння ОО1:

Обчислимо координати точки О1, розв'язавши систему рівнянь:

Тоді

(1)

Обчислимо об’єм тетраедра ОАВС за формулою

, тоді
. (2)

Враховуючи, що

,

одержимо:

,

звідки

або

.

Доведення 11. Теорему Піфагора для прямокутного тетраедра можна розглядати як наслідок теореми косинусів для довільного тетраедра [3], яка формулюється так: квадрат площі будь-якої грані тетраедра дорівнює сумі квадратів площ інших граней без подвоєних добутків площ цих граней, взятих попарно, на косинус двогранних кутів між ними, тобто

. (1)

У прямокутному тетраедрі двогранні кути

прямі і з теореми косинусів (1) одержимо співвідношення

площі граней - катетів, а

- площа грані - гіпотенузи.

Таким чином, стереометричний аналог теореми Піфагора можна сформулювати так: У прямокутному тетраедрі квадрат площі грані гіпотенузи дорівнює сумі квадратів площ граней - катетів.

Зауваження. Має місце наслідок з цієї теореми: площі граней - катетів є середніми геометричними між площею грані — гіпотенузи і площами їх проекцій на грань - гіпотенузу (див. доведення 5).


Висновок

Мабуть, найпопулярнішою з усіх теорем є теорема Піфагора. Причинами такої популярності є простота, краса, значення. Справді, теорема Піфагора проста, але не очевидна. Це поєднання двох суперечностей і надає їй особливої привабливості.Теорема Піфагора - важливий інструмент геометричних обчислень. Використовуючи її, можна обчислити у планіметрії діагональ квадрата і прямокутника, висоту, медіану, бісектрису рівностороннього або рівнобедреного трикутника, висоту рівностороннього трикутника, радіуси вписаного і описаного кіл правильного трикутника, рівнобедреного трикутника тощо.

Теорема Піфагора використовується при розв’язанні трикутників, у теорії площ.

У стереометрії теорема Піфагора застосовується при обчисленні висоти, ребра або апофеми правильної піраміди, при вивченні многогранників, тіл обертання та їх комбінацій.

Взагалі, перелічити з достатньою повнотою всі випадки, де використовується теорема Піфагора в геометрії неможливо. Вона має не лише теоретичний характер, а й широко використовується на практиці при розрахунках покрівель дахів, верхніх частин вікон у будинках готичного і романського стилю, паркетуванні підлоги тощо.

З теореми Піфагора випливає чимало наслідків, які є її вінцем, зокрема:

- у прямокутному трикутнику будь – який катет менший від гіпотенузи;

- косинус кута а менше одиниці для будь – якого гострого кута а;

- якщо до прямої з однієї точки провести перпендикуляр і похилі ,то похилі більші перпендикуляра; рівні похилі мають рівні проекції; з двох похилих більша та, у якої проекція більша.

Сама теорема Піфагора є наслідком теореми : косинус кута залежить лише від градусної міри кута. Тому, якщо теорему Піфагора «вплести» у вінок її наслідків, то отримаємо вінок наслідків теореми про косинус кута.

Із означень sinα, cosα, tgαвипливають такі властивості:

- катет, протилежний куту α , дорівнює добутку гіпотенузи на sinα;

- катет, прилеглий до кута α , дорівнює добутку гіпотенузи на cosα;

- катет, протилежний куту α , дорівнює добутку другого катета наtgα;

- катет прямокутного трикутника є середнє пропорційне між гіпотенузою і його проекцією на гіпотенузу;

- висота прямокутного трикутника, опущена з вершини прямого кута, є середнє пропорційне між проекціями катетів на гіпотенузу.

Вся геометрія складеться з таких прекрасних віночків, слід лише придивитись до них, звертати на них увагу, порівнювати, запам’ятовувати і вміло використовувати їх при розв’язанні задач.

Література

1. Боровик В.Н., Зайченко І.В., Кобко Л.М. «Гармонія і естетика трикутника». Навчальний посібник для студентів вищих навчальних закладів – 2-е вид., виправл. і доп.. Рекомендовано МОН України – К.: Освіта України, 2007. – 180с.

2. Кобко Л.М. «Аналогія: планіметрія–стереометрія в таблицях». Навчальний посібник для студентів педагогічних вищих навчальних закладів. – Чернігів, 2008.- 64с.

3. Кобко Л.М. «У світі геометрії». Навчально–методичний посібник для студентів педагогічних вищих навчальних закладів. – Чернігів, 2009.- 209с.