Смекни!
smekni.com

Вміння порівнювати в процесі навчання математики (стр. 3 из 8)

Традиційна програма змісту математичної освіти в середній школі мала два розділи. Від учнів було потрібно лише міцне засвоєння основ математичних знань і основних алгоритмів рішення типових задач. Значний крок у напрямку планування роботи вчителя математики по навчанню учнів прийомам розумової діяльності зроблений у новій програмі. У ній зазначено, що шкільна математика займає провідне місце у формуванні науково-теоретичного мислення школярів, а тому під час вивчення в перелік прийомів і методів мислення учнів повинні включатися індукція і дедукція, узагальнення і конкретизація, аналіз і синтез, класифікація і систематизація, абстрагування й аналогія. Учні опановують прийоми аналітико-синтетичної діяльності при засвоєнні понять, при доказі теорем і розв’язанні задач. У розділі “Міжпредметні зв'язки” зазначені ситуації для застосування і переносу вироблених умінь і навичок. Власне кажучи, мова йде про прийоми навчальної діяльності, хоча явно вони не названі.

У процесі спостереження, бесід і анкетування виявлено, що більшість учнів 7-9 класів не можуть дати правильного визначення прийому “порівняння” і не розуміють ролі порівняння в засвоєнні знань. 70 % учнів показали, що вони не тільки не вміють провести повне порівняння, але й поверхово володіють фактичним матеріалом, що не завжди помітно при його послідовному викладі. 82 % учнів не змогли назвати послідовності дій при порівнянні. Отримані нами експериментальні дані свідчать про те, що завдання на порівняння для школярів незвичні й важкі.

На підставі досліджень Е.Н.Кабанової-Меллер [8,9,10] і В.Н.Осінської [14] нами виділені три рівні оволодіння прийомами. До першого відносяться учні, що не знають суті прийому і використовують його тільки під керівництвом учителя. До другого рівня – учні, що розуміють суть прийому, знають правило-орієнтир, але застосовують його не завжди повно й усвідомлено. Третій рівень характерний тим, що учні знають суть прийому, правило його реалізації, уміють самостійно його застосовувати.

Накопичені теоретичні дані в психології, педагогіці з великими труднощами впроваджуються в практику школи.

Найбільш важливі результати, отримані психологами, дидактами, методистами по проблемі формування прийомів мислення:

1. Одним з важливих шляхів розумового розвитку є навчання учнів прийомам мислення.

2. У психолого-педагогічній літературі обґрунтовано положення про те, що в процесі навчання необхідно відокремлювати дві самостійні, але взаємообумовлені і взаємозалежні задачі: оволодіння учнями змістом того або іншого предмета і цілеспрямоване формування в них загальних і специфічних розумових дій і прийомів розумової діяльності.

3. Існує розрив між накопиченими теоретичними даними в психології, педагогіці і їх впровадженням в частині методи, зокрема, у методику математики, у практику школи.

4. Система прийомів складна, динамічна система, що розвивається.

5. Навчання прийомам можна і потрібно здійснювати на ведучому навчальному матеріалі.

6. Формування прийомів розумової діяльності вимагає врахування індивідуально-вікових особливостей учнів.

1.2 Формування уміння порівнювати в процесі навчання

математики

Порівняння в навчанні – це розумова операція, за допомогою якої встановлюються риси подібності і відмінності між визначеними предметами і явищами.

Пізнання будь-якого предмету і явища починається з того, що ми відрізняємо його від інших предметів і встановлюємо його подібність з родинними предметами. У цьому виявляються дві основні форми, у яких здійснюється порівняння: співставлення і протиставлення.

Протиставлення – форма порівняння, спрямована на з'ясування відмінного в предметах і явищах при виділенні істотних ознак і властивостей.

Співставлення – форма порівняння, спрямована на виділення істотних властивостей, загальних для ряду об'єктів.

У розумовій діяльності учня протиставлення і співставлення як форми порівняння виконуються в єдності і є засобом аналізу і синтезу досліджуваних понять, фактів , предметів. Але в навчальному процесі ці розумові операції найчастіше здійснюються послідовно.

Надзвичайно важлива роль порівняння при формуванні понять, узагальнені і систематизації знань. Порівняння - засіб зв'язку нових і раніше засвоєних знань, матеріалу підручника й особистого досвіду учнів.

У математиці важливо уміти встановлювати відмінності між близькими родинними поняттями (наприклад, між раціональними й ірраціональними числами, правильними і неправильними дробами) і подібність між віддаленими поняттями (трикутником і тетраедром).

По ступеню повноти розрізняють часткові і повні порівняння. Суть часткового порівняння у встановленні тільки подібного або тільки відмітного. Якщо в об'єктах знаходять ознаки подібності, то це зіставлення, якщо шукають відмінність – це протиставлення.

Повне порівняння вимагає встановлення подібності і відмінності. Часткове порівняння ефективне на етапах сприйняття й осмислення знань, дозволяє глибше усвідомити особливе в досліджуваному матеріалі, зрозуміти його зв'язок з раніше засвоєними знаннями.

Пізнавальні завдання на протиставлення можуть бути такими :

1. Чим відрізняється об'єкт А від об'єкта В?

2. Яких властивостей немає в об'єкті А в порівнянні з об'єктом В?

3. Якими додатковими властивостями володіє об'єкт А в порівнянні з об'єктом В?

4. Чим відрізняються формулювання...?

Приклади:

1. Чим відрізняється бісектриса трикутника від його медіани?

2. Які додаткові властивості має рівносторонній трикутник в порівнянні з рівнобедреним?

3. Чим відрізняється ромб від квадрата; ромб від паралелограма? Які властивості в них спільні?

4. Які додаткові властивості має прямокутник в порівнянні з паралелограмом?

З метою узагальнення матеріалу учням пропонуються завдання на співставлення об'єктів (находження спільного).

Приклади:

1. Які спільні властивості має симетрія, паралельний перенос, поворот? В чому причина загальності даних властивостей?

2. Що спільного в доведенні ознаки паралельності прямої і ознаки паралельності площин?

Повне порівняння ефективне на етапах узагальнення і систематизації знань.

Приклади:

1. Порівняйте ознаки рівності трикутників з ознаками подібності трикутників. Які висновки можна зробити на основі порівняння?

2. Порівняйте основні припущення про довжини і площі. Які висновки з цього можна зробити?

По способах здійснення розрізняють порівняння паралельні, послідовні відстрочені.

Паралельні порівняння застосовуються при одночасному вивченні взаємопов’язаних понять, теорем і задач, при викладі матеріалу блоками.

В дев’ятому класі доцільно в порівнянні паралельно вивчати поняття паралельних, мимобіжних та прямих, що перетинаються (таблиця 1).

Таблиця 1

Прямі на площині і в просторі
Паралельні Ті, що перетинаються Мимобіжні
1. Не мають спільних точок2. Лежать в одній площині 1. Мають одну спільну точку2. Лежать в одній площині 1. Не мають спільних точок2. Не лежать в одній площині

Доцільні завдання такого змісту:

1. Які ознаки спільні у паралельних прямих і прямих, що перетинаються; у паралельних і мимобіжних?

2. Які відмінні ознаки у паралельних і мимобіжних прямих?

Виконання таких завдань, по-перше, формує вміння аналізувати, порівнювати і, по-друге, попереджує типову помилку, коли учні в означенні мимобіжних прямих називають тільки першу ознаку.

Послідовне порівняння полягає в тому, що новий об'єкт порівнюється з раніше вивченим. Порівняння сприяє встановленню більш глибоких зв'язків раніше вивченого і нового матеріалу, полегшує засвоєння знань, допомагає побачити аналогії.

Розглянемо приклад послідовного порівняння під час вивчення у восьмому класі поняття рівності фігур за допомогою руху. Учні повторюють відомі їм означення рівності трикутників:

АВС=
А1В1С1, якщо АВ=А1В1, ВС=В1С1, АС=А1С1,
А=
А1,
В=
В1,
С=
С1. Вчитель дає нове означення рівності фігур за допомогою руху. Порівнюючи ці означення, учні виділяють істотні ознаки між ними. Різні означення рівності трикутників – це наслідок відмінності їх теоретичних обґрунтувань. А щоб учні впевнилися в тотожності цих означень при їх різних формулюваннях, на прикладі з трикутниками доводиться, що із одного означення випливає інше і навпаки.