| ||
|
и определяем величину:
Затем по таблице определяем в зависимости от l вероятность Р(l), того что за счёт чисто случайных причин расхождение между F*(t) и F(t) будет не больше, чем фактически наблюдаемое.
При сравнительно больших Р(l) теоретический закон распределения можно считать совместимым с опытными данными.
Раздел 2. Исследование взаимосвязи двух количественных признаков
1. Оценка тесноты корреляционной связи
Из логических соображений выдвинем предположение, что признак (названный нами y) зависит от второго исследуемого признака x.
Используя проведенное в первом разделе разбиение значений x на интервалы, построим аналитическую таблицу:
Аналитическая таблица исследования зависимости признака y от признака x
Группы предприятий по признаку x | Число предприятий в j-ой группе mj | Признак y | |
Суммарное значение в группе | Среднее значение признака yi в j-ой группе на одно предприятие | ||
31,4 – 34,02 | 8 | 250,8 | 31,3500 |
34,02 – 36,64 | 9 | 298,6 | 33,1778 |
36,64 – 39,26 | 6 | 207,8 | 34,6333 |
39,26 – 41,88 | 4 | 143,8 | 35,9500 |
41,88 – 44,5 | 3 | 113,3 | 37,7667 |
Далее рассчитываем общую дисперсию:
|
где
|
|
Оценку тесноты связи признаков y и x проводим по шкале Чеддока:
-если 0,3<h£0,5, то теснота связи заметная;
-если 0,5<h£0,7, то теснота связи умеренная;
-если 0,7<h£0,9, то теснота связи высокая;
-если 0,9<h£0,9(9), то теснота связи весьма высокая.
|
2. Определение формы связи двух признаков
Примерное представление о виде зависимости y от x даёт линия, проведённая через точки, соответствующие групповым средним и полученные на основе аналитической таблицы следующим образом: среднему значению признака
Вычислив частные производные и приравняв их к нулю, получим систему линейных алгебраических уравнений относительно коэффициентов а и b. В нашем случае система уравнений имеет вид:
Решая эту систему уравнений относительно b, получим:
Решая первое уравнение относительно а, получим:
|
где sx и sy - средние квадратические отклонения признаков x и y.
|
|
где yx(хi) - значение величины y, рассчитанное по уравнению регрессии при подстановке в него значения xi; yi- значение величины y в исходной таблице, соответствующее значению xi.
|
|
Определим индекс корреляции:
|
Индекс корреляции принимает значения 0£ i £1.
Т.к. i близок к единице, то связь между признаками хорошо описана выбранным уравнением регрессии. Для линейной зависимости дополнительным условием для такого заключения является близость значений r и i.
|
где m - число коэффициентов в уравнении регрессии.
Принимая во внимание то, что мы имеем дело с малой выборкой, необходимо оценить значимость коэффициентов уравнения регрессии, а также индекса корреляции i и линейного коэффициента корреляции r. Значимость линейного коэффициента корреляции r оцениваем с помощью критерия Стьюдента. Фактическое значение критерия Стьюдента равно:
|
Критическое (предельное) значение критерия Стьюдента tk, берем из табл.4 приложения, задаваясь уровнем значимости a=5,0 и имея число степеней свободы равное:
|
Если tr>tk, то величину линейного коэффициента корреляции считаем значимой и можем использовать в расчетах.
|
|
Учитывая, что число степеней свободы также равно k=n-2, сравнение фактических значений критерия Стьюдента ведем с уже найденным критическим значением tk.
Если ta>tk, tb>tk, то соответствующий коэффициент уравнения регрессии значим, и мы можем им пользоваться. Значимость индекса корреляции определяем с помощью критерия Фишера. Фактическое значение критерия Фишера равно:
|