Смекни!
smekni.com

Линейное и динамическое программирование (стр. 2 из 8)

Двойственная задача линейного программирования

Задача линейного оптимального планирования - исходная в своей паре симметричных двойственных задач. Вообще же другая задача в двойственной паре строится так:

1)меняется тип экстремума целевой функции (mах на min и наоборот);

2)коэффициенты целевой функции одной задачи становятся свободными членами другой задачи;

3)свободные члены одной задачи становятся коэффициентами целевой функции двойственной задачи;

4)тип неравенств меняется (≤ на ≥ и наоборот);

5) каждый столбец одной задачи порождает строку ограничений другой задачи и наоборот. В матрично-векторном виде обе задачи выглядят так:

исходная задача двойственная задача

L=(c,x)-max Z=(b,y)-min

Ax≤b, x≥0 Ya≥c, y≥0,

L(x1,x2,x3,x4)=48xl+30x2+29x3+10x4 -max Z(y1,y2,y3,y4)=198yl+96y2+228y3 - min

1+2х2+4х3+3х4≤198 3y1+2y2+6y3≥48

1+3х2+1х3+2х4≤96 2y1+3y2+5y3≥30

1+5х2+1х3+0х4≤228 4y1+ y2 + y3≥29

xj≥0, jєN4 3y1+2y2≥10

yj≥0, jєN3

Решение полученной задачи легко найти с помощью второй основной теоремы двойственности, согласно которой для оптимальных решений X(x1, x2, x3, x4) и Y(y1, y2, y3) пары двойственных задач необходимо и достаточно выполнение условий:

x1(3y1+2y2+6y3-48)=0 y1 (3х1+2х2+4х3+3х4)-198=0

x2(2y1+3y2+5y3-30)=0 y2 (2х1+3х2+1х3+2х4)-96=0

x3(4y1+1y2+1y3-29)=0 y3 (6х1+5х2+1х3+0х4)-228=0

x4(3y1+2y2+0y3-10)=0

В решении исходной задачи х1>0, х3>0, поэтому

3y1+2y2+6y3-48=0

4y1+1y2+1y3-29=0

Учитывая, что второй ресурс был избыточным и, согласно теореме двойственности его оценка равна нулю – y2=0, то приходим к системе:

3y1+6y3-48=0

4y1+1y3-29=0

из которой следует, что y1=6; y3=5.

Таким образом получили двойственные оценки ресурсов: y1=6; y2=0; y3=5; общая оценка всех ресурсов Z=198y1+228y3=2328.

Заметим, что полученное решение содержалось в последней строке последней симплексной таблицы исходной задачи

Таблица N 3

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

29

х3

24

0

-1/7

1

6/7

2/7

0

-1/7

0

x6

4

0

13/7

0

13/7

-4/21

1

-5/21

48

х1

34

1

6/7

0

-1/7

-1/21

0

4/21

2328

0

7

0

8

6

0

5

Решение одной из пары двойственных задач можно найти, зная только ответ к другой задаче и пользуясь 2-й теоремой двойственности: если i-e ограничение одной из пары двойственных задач на компонентах оптимального решения есть строгое неравенство, то оптимальное значение i-й переменной другой задачи равно 0, или, что то же самое - если оптимальное значение j-й переменной одной задачи строго положительно, то j-e ограничение другой из пары двойственных задач на компонентах оптимального решения есть равенство.

Важен экономический смысл двойственных оценок. Двойственная оценка, например, третьего ресурса у3=5 показывает, что добавление одной единицы третьего ресурса обеспечит прирост прибыли на 5 единиц.

Расшивка "узких мест" производства

Таблица N 3

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

29

х3

24

0

-1/7

1

6/7

2/7

0

-1/7

0

x6

4

0

13/7

0

13/7

-4/21

1

-5/21

48

х1

34

1

6/7

0

-1/7

-1/21

0

4/21

2328

0

7

0

8

6

0

5

При выполнении оптимальной производственной программы первый и третий ресурсы используются полностью, тем самым они образуют "узкие места" производства. Будем их заказывать дополнительно. Пусть Т=( t1,t2,t3) - вектор дополнительных объемов ресурсов. Так как мы будем использовать найденные двойственные оценки ресурсов, то должно выполняться условие H+Q-lТ≥0, где Н - значения базисных переменных в последней симплексной таблице, а Q-1 - обращенный базис, который образуют столбцы при балансовых переменных в этой таблице. Задача состоит в том, чтобы найти вектор Т, максимизирующий суммарный прирост прибыли W=6t1+5 t3 при условии сохранения двойственных оценок ресурсов (и, следовательно, ассортимента выпускаемой продукции), предполагая, что можно получить дополнительно не более 1/3 первоначального объема ресурсов каждого вида.

24 2/7 0 -1/7 t1 0

4 + -4/21 1 -5/21 0 ≥ 0

34 -1/21 0 4/21 t3 0

t1 198

0 ≤ 1/3 96

t3 228

t1≥0, t3≥0.

W=6t1+5t3 -max

-2/7 t1 + 1/7 t3 ≤ 24

4/21 t1 + 5/21 t3 ≤ 4

1/21 t1 - 4/21 t3 ≤ 34

t1198/3, t3228/3.

t1≥0, t3≥0.

Как видно, после графического решения (График 2) программа расшивки приобретает вид:

t1=21, t2=0, t3=0

С новым количеством ресурсов: 198+21 219

b' = 96+0 = 96

228+0 228

у предприятия будет новая производственная программа.

Найдем h'=Q-1 b'

5/28 0 -1/7 219 30 -x3

-4/7 1 -1/7 96 = 0 -x6

-3/28 0 2/7 228 33 -x1

Теперь новая производственная программа имеет вид: X'оpt=(33;0;30;0). При этом второй ресурс был использован полностью.

219

При наличии ресурсов b' = 96 производство наиболее выгодно, так как

228

достигается max прибыль с использованием всех ресурсов. Также обратим внимание на то, что производство продукции 1–го вида при заказе дополнительных ресурсов необходимо будет уменьшить на 15 единиц, а производство продукции 3–го вида – увеличить на единицу.

ΔLmax=(Y,t)=6·21=126, где Y=(6;0;5); t(21;0;0)

L'max= ΔLmax+ Lmax=126+2328=2454.

Этот результат можно проверить, подставив значения х1 и х3 в первоначальную целевую функцию: L'max=48xl+30x2+29x3+10x4=31·37+41·21=1147+861=2454.